
39

Chapter 2

The Imperative Programming Languages,

C/C++

As we discussed in Chapter 1, the imperative paradigm manipulates named data in a fully specified, fully
controlled, and stepwise fashion. It focuses on how to do the job instead of what needs to be done.
Imperative programs are algorithmic in nature: do this, do that, and then repeat the operation n times, etc.,
similar to the instruction manuals of our home appliances. The coincidence between the imperative
paradigm and the algorithmic nature makes the imperative paradigm the most popular paradigm among all
possible different ways of writing programs. Another major strength of the imperative paradigm is its
resemblance to the native language of the computer (von Neumann machine), which makes it efficient to
translate and execute the high-level language programs in the imperative paradigm.

In this chapter, we study the imperative programming languages C/C++. We will focus more on C and the
non-object-oriented part of C++. We will study about the object-oriented part of C++ in the next chapter.

By the end of this chapter, you should

have a solid understanding of the imperative paradigm;
be able to apply the flow control structures of the C language to write programs;
be able to explain the execution process of C programs on a computer;
be able to write programs with complex control structures including conditional, loop structures,
function call, parameter passing, and recursive structures;
be able to write programs with complex data types, including arrays, pointers, structures, and
collection of structures.

The chapter is organized as follows. Section 2.1 gives a quick tutorial on C/C++ so that students can start
their laboratory work on C. Section 2.2 introduces the C/C++ control structures. Sections 2.3, 2.4, and 2.5
discuss data declaration; scope and basic data types; constant, array, pointer, and string; and type
construction, including enumeration type, union type, structured types, and file types. Section 2.5 also
presents several large program examples using array, pointer, and structures. Section 2.6 studies the
functions, function calls, and parameter-passing mechanism in the C language. Section 2.7 teaches a unique
technique of understanding recursion and writing recursive programs in four easy steps. Finally, Section
2.8 briefly discusses how to construct C programs into modules and how to use modules to form larger
programs.

Imperative programming is largely based on computer architectures and assembly language programming.
We will briefly discuss the basic computer architectures as the background material in Appendix A.

40

2.1 Getting started with C/C++
In this section, we first introduce how to write your first C/C++ program and how to perform input and
output. You can develop your programs in different programming environments. Two of the most
frequently used programming environments—GNU GCC and MS Visual Studio—are introduced in
Appendix B.

2.1.1 Write your first C/C++ program

A C program consists of one or more functions. There are two kinds of functions:

Built-in functions are prewritten and exist in libraries, for example, input and output functions
(printf, scanf in C and cin, cout in C++), mathematical functions (abs, sin, cos, sqrt);
User defined functions are written by the programmers.

The main() is a function that all C/C++ programs must have, which is the entry point of the programs
(i.e., execution of all programs begin at the first statement of the function). The shortest and simplest
C/C++ program is:

main() { }

Obviously, this program does nothing. Usually, main will have some statements and invoke other user
written or library functions to perform some job. For example:

/* My first program, file name hello.c

 This program prints "hello world" on the screen */

#include <stdio.h> // the library functions in stdio will be used

main() {

 printf("hello world\n");

}

The simple C program will call a library function printf to print
hello world

The first two lines are comments. There are two ways to write comments in C/C++. Multi-line comments
can be quoted in a pair of /* and */, while single line comments can simply follow double slashes //.

The third line of the program specifies what library package will be used. In this program, we use printf
that is defined in the stdio package. In the print statement, “\n” is the “newline” control symbol that puts
this output on a line by itself. Another useful control symbol is “\t” for tab.

A C/C++ function may return a value (like a Pascal function) or return no value (like a Pascal procedure).
A function may take zero or a number of parameters. The following are several forms of the main function:

main () { ... } // acceptable for C

void main() { ... } // in C++, void must be used.

int main() {... return 0;}

void main (int argc, char *argv []) {...}

The first and the second forms do not require the function to return a value. The third form requires the
function to return an integer value. The fourth form does not require a return value but requires parameter
inputs.

41

You may ask how do we or why do we need to pass values to the function that will be called before any
other statements or functions are executed? The answer is that the parameters to the main() function allow
it to take command line inputs, used to specify, for example, the name of a data file.

For example, if we compiled our first program hello.c into the executable code hello.exe, we can
execute the program by simply typing the name hello and the Enter key. However, if we have a program,
say, letterReader.exe that reads a text file, say, letter.txt, then we need to execute the program by
typing

letterReader letter.txt

where the file name “letter.txt” will be passed to the main function of the program letterReader as
a parameter.

Unlike Java, C/C++ functions and variables may exist outside any class or functions. These functions and
variables are global. Function main() is always a global function.

2.1.2 Basic input and output functions

Generally, input in C/C++ is reading from a file and output is writing to a file. The keyboard is considered
the standard input file and the monitor screen is considered the standard output file. The functions
getchar() and putchar(x) are the basic I/O library functions in C. getchar() fetches one character
from the keyboard every time it is called, and returns that character as the value of the function. After it
reaches the last character of a file, it returns EOF (end of file), signifying the end of the file. On the other
hand, putchar(x) prints one character (the character stored in variable x) on the screen every time it is
called. The following program reads a line of characters from the keyboard and prints it on the screen. Since
both standard input and output are in fact files, a similar program can be used to copy the contents of one
file to the other.

#include <stdio.h>

main() {

 char c; // declare c as a character type variable

 c = getchar(); // input one character from the keyboard

 while (c != '\n') { // while c the newline control symbol

 putchar(c); // print to screen

 c = getchar(); // input another character from the keyboard

 }

}

To input a stream of characters, you can use fget:

char *fgets(char *tempstr, int n, FILE *inputfile)

where tempstr will point to the string read from the file pointer inputfile. Using this read operation,
we can read from any text file. For now, we will consider the input file is the keyboard and the file name is
stdin. The int variable n is the maximum number of characters (bytes) we want to read. The operation
fgets will stop when n-1 characters are read or a newline character is read. It returns null if nothing is
read into the tempstr. Otherwise, it will return the value of tempstr.

The following snippet of code shows an example of using fgets.
char tempstr[256];

char name[32]; char breed[32]; char owner[32];

42

printf("Please enter the dog's info in the following format:\n");

printf("name:breed:owner\n");

fgets(input, sizeof(tempstr), stdin); // read from keyboard

// change '\n' char attached to tempstr into null terminator

tempstr[strlen(tempstr) - 1] = '\0';

char* name = strtok(tempstr, ":"); // parse to ":"

char* breed = strtok(NULL, ":"); // remove separator

char* breed = strtok(tempstr, ":"); // parse to ":"

char* owner = strtok(NULL, ":"); // remove separator

where strtok function is used to parse the string and extract the part of the string separated by a separator.
In this example, ":" is used. You can use other separators, such as " " or ",". In the program, function
call strtok(tempstr, ":") will read tempstr upto ":", while strtok(NULL, ":") will remove
":" and return the remaining string.

2.1.3 Formatted input and output functions

The basic input/output functions allow us to read and write a character at a time. They cannot be used to
read and write other types of variables and cannot control the format of output.

The formatted input/output functions are printf and scanf that take an argument for formatting
information. The following program demonstrates a simple use of the functions.

/* The program takes a number from the keyboard, processes the number,

 and then prints the result. */

#include <stdio.h>

main () {

 int i; // i is an integer type variable

 float n = 5.0; // n is floating-point type and is initialized to 5.0

 printf("Please enter an integer\n");

 scanf("%d", &i); // An integer is expected from the keyboard

 if (i > n)

 n = n + i;

 else

 n = n − i;
 printf("i = %d\t n = %f\n", i, n); //%d, \t, %f, and \n control formats

}

Assume a number 12 is entered when scanf is executed; the output of the program is
i = 12 n = 17.0

Generally, the formats of scanf and printf are
scanf ("control sequence", &variable1, &variable2, ... &variablek);

printf ("control sequence", expressions);

In the scanf function, the ampersand “&” is the address-of operator that returns the address of the variable.
Using the address-of operator in the argument of a function (e.g., &i in scanf) enforces the parameter
passing by reference. Parameter-passing mechanisms will be explained in detail later in Section 2.6.

43

In the printf function, the “expressions” is a list of expressions whose values are to be printed out.
Each expression is separated by a comma.

The control sequence includes constant strings to be printed (e.g., “i = ”), and control symbols to be used
to convert the input/output from their numeric values that are stored in the computer to their character
format displayed. The control symbol “%d” in the scanf and printf signifies that the next argument in
the argument list is to be interpreted as a decimal number and “%f” signifies that the next argument is to be
interpreted as a floating-point number. The other control characters include “%c” for characters and “%s”
for strings of characters. The symbols “\n” and “\t” signify the “newline” that puts the next output on a
new line, and “tab” puts the next output after a tab. If there is no “newline” or “tab” at the end of the
first output line, successive calls to printf (or putchar) will simply append the string or character to the
previous output line.

In C++, a different library package and different I/O functions are used. When you use C++ specific
features, your program name must have an extension .cpp for C++ program. If you use extension .c, your
program will be considered to be a C program only, and you will obtain compilation errors for C++ specific
features.

#include <iostream> // iostream is the C++ library I/O package

using namespace std;

void main() {

 int i, j, sum; // declaration

 cout << "Enter an integer" << endl; // prompt for input

 cin >> i; // read an integer and put in variable i

 cout << "Enter an integer" << endl;

 cin >> j; // read an integer and put in variable j

 sum = i + j;

 cout << "Sum is " << sum << endl; // print sum

}

A scenario of execution of the program is
Enter an integer

5

Enter an integer

7

Sum is 12

In the program, the functions cin and cout are C++ standard input and output functions. The function
endl is the C++ newline function corresponding to C’s “\n”.

In C-formatted I/O, a programmer must specify the type of variables to be printed. In C++, the types are
automatically recognized. This improvement simplifies printing statements in most cases. Unfortunately,
we still have situations where we have to tell the program what type of data to print. For example, a character
type in C/C++ is the same as an integer type. How do we tell the program that we want to print a character
or an integer? The solution is type casting. The following example shows how a character type variable c,
initialized to 68 and corresponding to the ASCII character “D,” is printed as integer 68 and as character “D”
using printf and std::cout, respectively. The ASCII table is given in Appendix C.

#include <iostream>

using namespace std;

44

void main(void) {

 char c = 68;

 printf("c = %d", c);

 printf("\tc = %c\n", c);

 cout<<"c = "<<(int) c;

 cout<<"\tc = "<<c<<endl;

}

The output of the program is
c = 68 c = D

c = 68 c = D

Please note that C++ I/O package <iostream> contains all C-styled I/O functions and control symbols
like printf, scanf, “\n” and “\t.”

2.2 Control structures in C/C++
In this section, we briefly review the basic control structures in C/C++, which are similar in all imperative
programming languages. The topics we will discuss are

operators and the order of evaluation,
basic selection structures,
multiple selection structures, and
iteration structures.

Recursion structures are much more complex and will be discussed in Section 2.7 in detail. Chapters 4 and
5 will have even more discussion on this topic.

2.2.1 Operators and the order of evaluation

C/C++ provides a set of operators to allow programmers to write complex arithmetic and logical
expressions. The precedence and associativity of C/C++ operators affect the grouping and evaluation of
operands in expressions. Table 2.1 summarizes the precedence and associativity (the order in which the
operands are evaluated) of C operators, listing them in the order of precedence from highest to lowest.
Operators with higher precedence are evaluated first. If two operators have equal precedence (they appear
at the same level in the table), they are evaluated according to their associativity, either from right to left or
from left to right, as defined in the right column of the table.

Table B.4 in Appendix B gives a complete list of the C/C++ operators, their precedence, description, and
associativity.

Please note that C/C++ use a lazy evaluation policy; that is, an expression will be evaluated only if its
value is needed. For example, if we have an expression

(i == 0) && j++

the second operand, j++, will be evaluated only if i == 0 is true (nonzero). Thus, jwill not be incremented
if i == 0 is false (0).

45

Operators Type of operation Associativity
Expression Left to right

prefix ++ and prefix –– sizeof & * + − ~ ! Unary Right to left
Typecasts Unary Right to left
* / % Multiplicative Left to right
+ – Additive Left to right
<<>> Logical bitwise shift Left to right
<><= >= Relational Left to right
== != Equality Left to right
& Bitwise-AND Left to right
^ Bitwise-exclusive-OR Left to right
| Bitwise-inclusive-OR Left to right
&& Logical-AND Left to right
|| Logical-OR Left to right
? : Conditional-expression Right to left
= *= /= %= += –= <<= >>= &= ^= |= Assignment Right to left
, Sequential evaluation Left to right

Table 2.1. C/C++ operators and their precedence.

2.2.2 Basic selection structures (if-then-else and the conditional expression)

The basic selection structure in C/C++ is implemented by if-then and if-then-else statements,
which can be defined by the syntax graph in Figure 2.1.

Figure 2.1. Syntax graph for if-then-else in C/C++.

In the syntax graph, <block1> and <block2> contain zero, one, or a block of statements. A block of
statements are enclosed within curly braces, which can contain zero, one, or multiple statements. Local
declaration can be given in each block. The <condition> is any expression that evaluates to integer value.
If the expression evaluates to 0 (considered “false”), <block2> will be executed, otherwise (any nonzero
value will be considered “true”), <block1> will be executed. In the syntax graph, we omitted the arrow
before the keyword if. In C, there is no Boolean type, while in C++ a Boolean type is predefined.

The following example illustrates the use of conditional structure and logic and relational operators.
if (a == b && c <= d)

 x = 0;

else {

 x = 1;

 y = 2;

if (<condition>) <block1> else <block2>if (<condition>) <block1> else <block2>

46

}

The character sequence “&&” is a logical operator for AND. The character sequences “==” and “<=” are
called relational operators. A complete set of both arithmetic and logical operators is given in Table 2.1.

C/C++ also provides a ternary conditional operator “?:” to form a conditional expression. The
conditional operator takes three operands and performs a similar selection function as an if-then-else
statement. The general form of the conditional operator is given in Figure 2.2.

In the syntax graph below, <operand1> and <operand2> can be any expression that returns a value or a
simple assignment statement, in which case, the assigned value will be considered the return value of the
operand. When the conditional expression is executed, the <condition> is first tested. If it returns a
nonzero or true value, <operand1> will be evaluated; otherwise, <operand2> will be evaluated.

Figure 2.2. Syntax graph for the conditional operator in C/C++.

The following example illustrates different ways of using the conditional expression and their effects. A
conditional expression can be used as an expression in the right-hand side of an assignment statement or as
a stand-alone statement.

i = 0; j = 0; // i = 0 and j = 0 represent false value

(i? i=5 : i=9); // 9 will be assigned to i;

k = (j? i=5 : j=9); // 9 will be assigned to j and to k

i = 1; j = 2 // i 0 and j 0 represent true value

(i? i=5 : i =9); // 5 will be assigned to i;

k = (j? j=5 : j=9); // 5 will be assigned to j and to k

2.2.3 Multiple selection structure (switch)

The basic selection statements select one out of two cases. If we have multiple choices, we need to use
nested if-then-else statements. For example:

if (ch == '+') x = a + b;

 else if (ch == '−') x = a − b;
 else if (ch == '*') x = a * b;

 else if (ch == '/') x = a / b;

 else printf("invalid operator");

It is often more convenient in such situations to use a multiple selection statement switch, as defined in
Figure 2.3.

The case statements label different actions we want to execute. The loop in the definition signifies that we
can have any number of case statements (the number must be greater than or equal to one). The break
statements, which exit the switch construct if a case is satisfied, are optional (there is a bypass route). The
default case is performed if none of the other cases is satisfied. According to the definition, default is
optional (there is a bypass route). If default is not included and none of the cases match, no action will
be executed. For example, the following piece of code selects one of the four operations.

switch (ch) {

 case '+': x = a + b; break;

(<condition> ? <operand1> : <operand2>) ;(<condition> ? <operand1> : <operand2>) ;

47

 case '−': x = a − b; break;
 case '*': x = a * b; break;

 case '/': x = a / b; break;

 default: printf("invalid operator");

}

Figure 2.3. Syntax graph for switch in C/C++.

Including the break statements in the code is not an efficiency issue, as many people believe. What would
happen if any one of the four break statements is omitted? Examine the following program without the
break statements.

/* This C program demonstrates the switch statement without using breaks.

 The program is tested on MS Visual C++ platform */

#include <stdio.h>

void main() {

 char ch = '+';

 int f, a=10, b=20;

 printf("ch = %c\n", ch);

 switch (ch) {

 case '+': f = a + b; printf("f = %d\n", f);

 case '−': f = a − b; printf("f = %d\n", f);
 case '*': f = a * b; printf("f = %d\n", f);

 case '/': f = a / b; printf("f = %d\n", f);

 default: printf("invalid operator\n");

 }

 ch = '−';
 printf("ch = %c\n", ch);

 switch (ch) {

 case '+': f = a + b; printf("f = %d\n", f);

 case '−': f = a − b; printf("f = %d\n", f);
 case '*': f = a * b; printf("f = %d\n", f);

 case '/': f = a / b; printf("f = %d\n", f);

 default: printf("invalid operator\n");

 }

 ch = '*';

 printf("ch = %c\n", ch);

switch (<expression>) {

case <value> : <block> break ;

default : <block> break ; }

switch (<expression>) {

case <value> : <block> break ;

default : <block> break ; }

48

 switch (ch) {

 case '+': f = a + b; printf("f = %d\n", f);

 case '−': f = a − b; printf("f = %d\n", f);
 case '*': f = a * b; printf("f = %d\n", f);

 case '/': f = a / b; printf("f = %d\n", f);

 default: printf("invalid operator\n");

 }

 ch = '/';

 printf("ch = %c\n", ch);

 switch (ch) {

 case '+': f = a + b; printf("f = %d\n", f);

 case '−': f = a − b; printf("f = %d\n", f);
 case '*': f = a * b; printf("f = %d\n", f);

 case '/': f = a / b; printf("f = %d\n", f);

 default: printf("invalid operator\n");

 }

 ch = '%';

 printf("ch = %c\n", ch);

 switch (ch) {

 case '+': f = a + b; printf("f = %d\n", f);

 case '−': f = a - b; printf("f = %d\n", f);
 case '*': f = a * b; printf("f = %d\n", f);

 case '/': f = a / b; printf("f = %d\n", f);

 default: printf("invalid operator\n");

 }

}

The switch statements in this program are all syntactically correct, but they do not implement the selection
at all. The omission of the break statements leads to the “fall through” execution of all the following cases
of statements. The output of the program is

ch = +

f = 30

f = −10
f = 200

f = 0

invalid operator

ch = −
f = −10
f = 200

f = 0

invalid operator

ch = *

f = 200

f = 0

49

invalid operator

ch = /

f = 0

invalid operator

ch = %

invalid operator

This rather “unexpected” output is due to the “jump-table” implementation of switch statements at the
assembly language level as shown in Figure 2.4.

The variable ch will be compared with the label values stored in the jump-table. If a match is found, the
control will jump to the right address of the statement-table. Obviously, if no break statement appears at
the end of each case, the machine would continue to execute the next statement. In some languages (e.g.,
Pascal), the compiler automatically adds a break statement at the end of each case. The advantage is the
elimination of a possible error source and the drawback is that the programmer loses a bit of writability—
in a rare case, a programmer may want to execute all the following cases once a condition is met.

Figure 2.4. The assembly language level implementation of the switch statement.

2.2.4 Iteration structures (while, do-while, and for)

The basic looping structure in C/C++ is the while-loop. The syntax graph of a while-loop is given in Figure
2.5.

Figure 2.5 Syntax graph for while statement in C/C++.

In a while-loop, the block of statements, called loop body, will execute repeatedly as long as the
condition statement produces a true (nonzero) value. However, there is no looping in the syntax
definition. This is because there is only a semantic level looping for the while-statement, but no looping
at the syntactic level. This is also true for the for-loop. On the other hand, there is a looping structure in
the syntax graph of the switch statement, but there is no looping for the statement at the semantic level.
The following program counts the number of inputs that are greater than 90. The program stops when a
negative number is entered.

#include <stdio.h>

main () {

 int i, c = 0;

add f a b

sub f a b

mul f a b

div f a b

default

+
-
*
/

else

print f

print f

print f

print f

ch

jump-table

statement table

add f a b

sub f a b

mul f a b

div f a b

default

+
-
*
/

else

print f

print f

print f

print f

ch

jump-table

statement table

while (<condition>) <block>while (<condition>) <block>

50

 scanf("%d", &i);

 while(i >= 0) {

 if (i > 90)

 c++; // counting: same as c = c + 1;

 scanf("%d", &i);

 }

}

A variation of the while-loop is the do-while-loop that tests the condition after the loop body has been
executed once. Using a do-while-loop, we need only one scanf statement for the example above:

#include <stdio.h>

main () {

 int i, c = 0;

 do { scanf("%d", &i);

 if (i > 90)

 c++;

 }

 while (i >= 0);

}

The for-loop can be considered a more compact form of the while-loop. It allows us to put the
initialization, condition-test, and increment parts of a loop in a single statement. The syntax graph of the
for-loop is given in Figure 2.6.

In the syntax graph, the <initialization> and <increment> can be single statements or multiple
statements separated by commas. The function of the for-loop is equivalent to the function of the
following code with a while-loop:

<initialization>

while(<condition>) {

 <block>

 <increment>

}

Figure 2.6. Syntax graph for the for statement in C/C++.

For example, the following program does a similar job as the program with a while-loop, except that the
program with a while-loop terminates if a negative number is entered, while the following program
terminates when exactly n numbers are entered.

main () {

 int i, k, n = 10, c=0;

 for(k=0; k<n; k++) {

 scanf("%d", &i);

 if (i > 90)

for (<initialization> ; <condition> ; <increment>)

<block>

for (<initialization> ; <condition> ; <increment>)

<block>

51

 c++;

 }

}

All three components in the parentheses of a for-loop are optional. A for-loop with all three
components absent creates an infinite loop:

 for(;;) <block>

In some programming languages (e.g., Pascal), the loop iteration variable k and the loop boundary variable
n may not be modified in the loop body, which means that the for-loop can only iterate a fixed number
of times. In C/C++, both variables can be modified and thus the for-loop can iterate a variable number of
times. However, it is not a good programming practice to modify any of the two variables even if we are
allowed to modify them. Normally, we use a while-loop or a do-while-loop if the number of iterations
is unknown and we use a for-loop if the number of iterations is fixed.

2.3 Data and basic data types in C/C++
The key concepts of data in a programming language include:

Type: What values and operations are allowed on the type of data?
Location: Where is data stored in memory?
Address/Reference (of location in memory): How do we find the location where a particular piece
of data is stored?
Name: How do we conveniently access the locations of data?
Value: What is stored in a memory location?
Scope (visibility and lifetime): Where and when is a piece of data visible or accessible?

We will look at these concepts while studying basic data types in C/C++.

2.3.1 Declaration of variables and functions

At machine level, all data and instructions are stored in memory locations in sequences of binary bits:
001011. It is up to the programmer to manage and interpret the bit patterns.

A variable declaration in a high-level programming language binds a name to a location in memory and
describes the attributes of the value in the location, so that the programmer can use the name to access the
memory location and the value stored in the location conveniently. A variable declaration describes the
following attributes of the value:

type
scope
qualifier (modifiability, e.g., constant)
variable initialization

Typically, the compiler allocates memory for the variable and binds the name to that location when a
variable is declared.

The general form of variable declaration in C/C++ is
qualifier typename variable_names separated by a comma.

52

For example:
int i = 0, j, k;

const double pi = 3.1415926;

float x = 3.0, y, z = 2.5;

The general form of function declaration in C/C++ is
typename function_name(typename name, ..., typename name){ <body> }

The typename before the function_name specifies the return-value type of the function. The list in the
parentheses is the list of parameters with their types. If a function does not return a value, we can either
write the type name void or write nothing. Similarly, if a function does not have any parameter, we can
either write void or nothing in the parentheses.

For example, the following program declares a max()function that returns the larger value between two
parameter values. The function is called twice in the main() function.

#include <stdio.h>

int max(int first, int second){ // function declaration

 if (first > second)

 return first;

 else return second;

}

void main (void) { // main function

 int i = 7, j = 5, k = 12, f;

 f = max(i, j); // function call

 f = max(k, f); // call the function again with different parameters

}

2.3.2 Scope rule

The scope rule of a C/C++ declaration: The scope of a variable is from its declaration to the end of the
block defined by a pair of curly braces. The idea of the scope rule is declare-before-use: any variables or
functions must be declared before they can be used. For example:

{

 int height = 6; int width = 6;

 int area = height*width;

 . . .

} // block ends

In this example, the variable area is initialized to height*width, which are declared just before the area
is declared. According to the scope rule, the declaration is correct. On the other hand, if we swap the order
of the first two lines

{

 int area = height*width;

 int height = 6; int width = 6;

 . . .

} // block ends

53

we will have a compilation error complaining that height and width are not declared when their values
are used.

There is a subtle difference between the scope rules of an imperative language and a functional language.
In a functional language, the scope rule normally says that “the scope of a variable is within the block in
which the variable is declared/defined.” Should the scope rule of C/C++ say that “the scope of a variable is
within the block in which the variable is declared,” no compilation error would occur if the declaration of
variable area is placed before height and width.

The declare-before-use principle is simple to understand and use for variables, but may cause problems for
declarations of mutually recursive functions. For example, a function F calls function G and function G calls
function F. In this case, which function should be declared first?

There are two possible solutions to this dilemma:

Multi-scan compilation: The compiler scans the program multiple times. For example, in the first round
of scan, all names (variables and functions) are stored in a name table, and in the second round of scan,
binding between names and memory locations is made.

Forward declaration: Each function is declared in two steps: a forward declaration and a genuine
declaration. The forward declaration makes a name known in advance (before it is used) and thus needs to
specify only the return type, function name, parameter types, and parameter names (parameter names are
optional). In the following program segment, for example, function bar calls function foo and function
foo calls function bar. In such a case, we cannot satisfy the declare-before-use requirement without using
forward declaration.

void bar(float, char); // forward declaration to satisfy scope rule

int foo(void); // forward declare all functions

...

int foo(void) { // genuine declaration

 . . .

 bar(2.5, '+'); // call function bar()

 . . .

}

void bar(float f, char c) { // genuine declaration

 . . .

 k = foo(); // call function foo()

 . . .

}

Most C/C++ compilers today use the multi-scan technique and thus forward declaration is not necessary
for mutually recursive functions. However, forward declaration is still frequently used for two reasons:

To make the program independent of the compiler
Better readability: The forward declarations serve as an index to (overview of) all functions

2.3.3 Basic data types

C defines five basic data types, sometimes called value types. They are:

Character (char)
Integer (int)

54

Floating-point (float)
Double precision floating-point (double)
Valueless (void)

C++ adds two more basic data types:

Boolean (bool)
Wide-character (wchar_t)

There is no Boolean type in C. The logic values are represented by integer: 0 for false and any other value
will be interpreted as true. The character type in C is based on the 7-bit ASCII code, which allows 128
characters. C++’s wide-character type is based on the 16-bit Unicode, which allows 216 = 65,536 characters.
Java’s character type is also based on the Unicode.

Several of these basic types can be modified using one or more of these modifiers:
signed, unsigned, short, long, register

The type modifiers signed and unsigned explicitly specify that the integer type is signed and unsigned,
respectively, although by default an integer type without any modifier is signed. For a signed integer, a “1”
at the most significant bit indicates a negative number, while for an unsigned integer, no bit is used for the
sign and only nonnegative numbers can be represented. Thus a “1” at the most significant bit indicates a
large positive number. The type modifiers short and long indicate the data ranges of the integers of these
types. It is more efficient to specify a short integer if you know your integer will not be very large. The type
modifier register suggests to the compiler that the programmer wants to access the variable as fast as
possible. Obviously, a variable can be accessed in the fastest way if it is put in a register. Since a processor
has a very limited number of registers, you should use the register modifier sparingly. The register
modifier is normally used for variables that need to be accessed frequently in a short period of time, such
as loop variables. Please note that the registermodifier is only a suggestion to the compiler. The compiler
will take it into consideration where it is possible. However, there is no guarantee that the compiler can
keep the variable in a register longer than the other variables.

Table 2.2 summarizes the basic data types available in C/C++. Since C/C++ can be implemented on
machines of different sizes (e.g., word length = 8, 16, 32, and 64), the number of bits used to implement a
particular data type can vary. However, the language requires that a minimum number of bits must be
guaranteed for each data type. The larger machines can use more bits to provide extra data range and/or
higher precision. The second and third columns of the table list the guaranteed minimum number of bits
and the minimum data range for each of the data types.

To find the exact size of each type on a particular machine, you can call the sizeof function using the type
name as the parameter sizeof(type_name). For example:

printf("size of long type = %d\n", sizeof(long));

will print the “size of long type = 4” if the machine uses 4 bytes to store a long integer. If we call
printf("bool-size = %d, true = %d, false = %d\n", sizeof(bool), true,
false);

The output would be
bool-size = 1, true = 1, false = 0

which means C++ uses one byte to store a bool type variable, the internal value of true is 1 and the
internal value of false is 0.

55

Type Minimum bits

bool(C++ only) 1 true/false
char 8 from −127 to 127
signed char 8 from −127 to 127
unsigned char 8 from 0 to 255
wchar_t(C++ only) 16 from 0 to 65 535
int 16 from −32 768 to 32 768
signed int 16 same as int
unsigned int 16 from 0 to 65 535
short int 16 from −32 768 to 32 768
signed short int 16 same as short int
unsigned short int 16 same as unsigned int
long int 32 ±2 147 483 647
signed long int 32 same as long int
unsigned long int 32 from 0 to 4 294 967 295
float 32 6 decimal digits of precision
double 64 10 decimal digits of precision

Table 2.2. Basic data types in C/C++.

To see the relationship among the types, we can classify the data types into four categories: scalar, function,
aggregate, and valueless (void) types, as shown in Figure 2.7. The scalar types can be further divided into
pointer, arithmetic, and enumeration types. In the diagram, boldfaced words are keywords and italic words
are optional keywords. Other names are generic terms. The basic data types we discuss in this section belong
to arithmetic types. Functions are considered a special data type. In the following sections, we will discuss
pointer, enumeration, and aggregated types.

Figure 2.7. Classification of data types.

Pointer Arithmetic

short

Array Structure

Data Type

Scalar Function void Aggregate

double

struct

Variant

union

Enumeration

enum

long

bool

float

unsigned

Integer

char int wchar_t

signed registerlong

Floating-point

Pointer Arithmetic

short

Array Structure

Data Type

Scalar Function void Aggregate

double

struct

Variant

union

Enumeration

enum

long

bool

float

unsigned

Integer

char int wchar_t

signed registerlong

Floating-point

56

2.4 Complex types
In the previous section, we discussed basic data types. In this section, we discuss more complex data types
including array, string as array of characters, pointer, constant, and enumeration.

2.4.1 Array

Array is a homogeneous collection of data elements that are stored in a consecutive block of memory
locations. At the assembly language level, we use the initial address of the block plus the offset (index) of
the element to access a particular element. At the high-level language level, we use the array variable name
and the index to access an array element. An array is declared by

 typename variablename[length] = {v0, v1, v2, ..., vlength-1};

The length and the initialization part, = {v0, v1, v2, ..., vlength-1}, are optional, which produces
four possible combinations:

1. typename variablename[length];

2. typename variablename[] = {v0, v1, v2, ..., vlength-1};

3. typename variablename[];

4. typename variablename[length] = {v0, v1, v2, ..., vlength-1};

The first two array declarations are correct and are most frequently used. In the first declaration, the array
variable and its length are declared. However, array elements are not initialized. In the second declaration,
the length of the array is implied by the number of elements in the initialization list.

The third array declaration will immediately cause a compilation error because the compiler needs to know
the size of the array to allocate the right amount of memory space for the array, and the size of the array is
missing in the declaration.

The fourth declaration is syntactically correct, but one can easily make a contextual error in using this
declaration! There are three possible cases when we use both explicit and implicit mechanisms to specify
the length of the array:

If length = n (the number of elements given in the initialization list), no problem will occur.
However, this case is exactly the same as the second way of declaration.
If length < n, a compilation (contextual) error will occur: there are not enough places to hold the
elements given in the list.
If length > n, no compilation error will occur. The n elements in the initialization list will be put in
the first n places 0, 1, 2, ..., n−1. This is a case that is not covered by the first two ways of array
declaration. Maybe this is the only case where we really need to use the fourth way of array
declaration.

In the declaration of arrays, the length must be an integer value or a simple expression with integer
operations like 20+5−1. It cannot contain a variable, even if the variable has been initialized.

The following piece of code illustrates the different ways of array declaration.
void main() {

 int a[3], sa, sb, sc, sd; // a is correctly declared without
initialization

 int b[] = {2, 3, 9, 4}; // b is correctly declared and initialized

 int c[2] = {15, 14}; // c is correct, but the length is unnecessary

 int d[5] = {15, 14, 18}; // the first 3 elements of d are initialized

57

// int d1[2] = {15, 14, 18}; // incorrect: not enough places

// int e[]; // incorrect: no length indication

 a[0] = 20; // array index always starts from 0

 a[1] = 30;

 a[2] = 90;

 sa = sizeof(a); // number of bytes used by a is 12

 sb = sizeof(b); // number of bytes used by b is 16

 sc = sizeof(c); // number of bytes used by c is 8

 sd = sizeof(d); // number of bytes used by d is 20

 printf("sa = %d\t sb = %d\t sc = %d\t sd = %d\n", sa, sb, sc, sd);

 printf("d0 = %d\t d1 = %d\t d2 = %d\t d3 = %d\t d4 = %d\n",

 d[0], d[1], d[2], d[3], d[4]);}

The output of the program is
sa = 12 sb = 16 sc = 8 sd = 20

d0 = 15 d1 = 14 d2 = 18 d3 = 0 d4 = 0

The first four lines of comments explain the different ways of declaration. The two incorrect declarations
are commented out so that the program can be compiled and executed.

In the program, the system function sizeof returns the number of bytes (a byte = 8 bits) of the variable.
The program is compiled on a 32-bit PC, an integer type variable takes 32 bits (4 bytes). If you compile the
same program on a different machine (e.g., a 16-bit or 64-bit machine), the sizeof function will return
different integer sizes. In Table 2.2, the minimum integer size given is 16 bits (2 bytes). When you write
C/C++ programs, you need to handle the word length of the machine on which your program runs. You can
use the sizeof function to find the word length of your computer and use the sizeof function to make
your program independent of the word length. More uses of the sizeof function will be seen later in the
text.

In Java, array declaration is different: We can declare an array without indicating its size and later give the
size when we create the array object during the execution. This way of memory allocation is called dynamic
memory allocation. The array declaration we discussed in this section is based on the static memory
allocation by the compiler. However, C/C++ does provide the dynamic memory allocation mechanism for
array and other structured data types. This will be discussed in conjunction with the pointer type.

We can define an array of int, char, and float, etc. Can we have an array of arrays? The answer is
yes. C and C++ use array of arrays to represent multidimensional arrays. Array of arrays are declared and
initialized like this:

char mac[5][7];

int mai[2][3] = {{4, 2, 3}, {7, 8, 9}};

Conceptually, array mai is stored in a matrix of 2 by 3, and its elements are accessed using the array name
and the two indices mai[i][j]. Structurally, array mai is stored in a block of consecutive memory
locations like this:

4 2 3 7 8 9

The following program illustrates the use of multidimensional arrays. Please note that maxrow and
maxcolumn are defined as macros. The compiler would not accept the declaration of the
maze[maxrow][maxcolumn+1] if they were defined as constant variables by using “const.”

58

#define maxrow 50

#define maxcolumn 100

#include <stdio.h>

//const int maxrow = 100, maxcolumn = 100;

char ma[maxrow][maxcolumn+1];

void main(void) {

 int i, j;

 for (i=0; i < maxrow; i++)

 for (j = 0; j < maxcolumn + 1; j++)

 ma[i][j] = 'x';

}

2.4.2 Pointer

Pointer type is the most challenging data type in C/C++. This is especially true for Java programmers.
Pointers provide programmers flexibility in accessing memory locations and modifying their values. On
the other hand, the flexibility can easily create incorrect programs due to lack of understanding of computer
organization and the relationships among different data types. This section will explain the principle of
pointer type and the correct ways of using pointer variables.

We start by exploring different aspects of a variable:

Value: A variable will hold a single value or a set of values. For example, an integer variable holds
a single value and an array variable holds a set of values. A value can appear on the right-hand side
of an assignment statement only and thus is called an r-value (for right-hand-side value).
Location: A variable will be associated with a location or a set of memory locations. The value of
a variable is stored in the location.
Address: The address of a variable is a natural number directly associated with a memory location
by the hardware. The address provides a direct way for programmers to access (read or write) a
memory location or variable. The address refers to the literal number and thus is also an r-value.
Name: The name of a variable is a mnemonic symbol that provides a convenient way for
programmers to access a memory location or variable. A name is associated with a memory location
(or translated into the address of the location) by the compiler. Some languages only use names to
access memory locations (e.g., Java). Some languages allow using both names and addresses to
access memory locations (e.g., C/C++). A variable name can appear in the left-hand side and right-
hand side of an assignment statement and is called l-value (for left-hand-side value). A variable
name has two faces: If it is used on the left-hand side of an assignment, it refers to the memory
location. If it is used on the right-hand side of an assignment, it refers to the value stored in the
memory location.

We can use an analogy to understand these aspects. Consider the soccer teams attending the World Cup.
Each team consists of a number of members, corresponding to the set of values stored in a variable. Each
team member will stay in a location (i.e., a hotel room). Each location will have a unique address (i.e., street
address of the hotel plus room number). The team and each team member can be accessed by the address.
In computer memory, the set of values related to a variable is normally stored in a consecutive block of
memory locations, and thus, we can use the initial address of the block to access the values starting at that
address. The hotel and rooms may also have names. If the context (scope) is clear, we can also use the name
of the hotel and the name of a room to access a team member staying in the room. Read Appendix A,
Section A.2 for a more detailed example.

59

Why do we need the name if we have the address of a memory location? Humans are better at reading,
understanding, and remembering names than long tedious numbers.

Why do we need addresses in high-level language programming if we have names? The reasons are twofold.
First, every memory location in a computer has an address, but not every memory location has a name. We
can use addresses to access unnamed variables. Second, memory addresses are numbers and can be
manipulated. For example, we can easily increment the address of the current location to obtain the address
of the next location, or compare the two addresses to determine which address is smaller. As a result, it is
more powerful and more flexible to access memory locations using addresses than using names.

What is a pointer? To take advantage of names (easy for humans to remember) and addresses (flexible in
programming), we give a name to an address. The name of an address is a pointer. In other words, a pointer
variable contains the address of another variable. Like any variable, a pointer variable is an l-value and the
address stored in the pointer variable is an r-value.

Pointer as a data type is common in most imperative languages. The data range is the address space of the
programming language. In C/C++, the data range is the same as an unsigned integer. The operations on
pointers include the following:

Assignment operation: An address value can be assigned to a pointer variable.
Integer operations: A pointer variable can be operated like an integer variable.
Referencing operation: Obtain the address of a variable x from the variable name: &x. The
ampersand & is called the address-of operator that returns the address value of the variable it
precedes. For example, if integer x is allocated at memory address = 2000, then &x will return 2000.
Please note that &x returns the address value, not a pointer variable containing that address value,
and thus &x is an r-value and can never appear on the left-hand side of an assignment statement.
Dereferencing operation: To access the variable pointed to by a pointer variable y, we can use the
dereferencing operator*y. In other words, the dereferencing operator * creates a new name for the
variable pointed to by the pointer variable y. Please note that *y is a new name of the variable
pointed to by the pointer variable that * proceeds. *y is an l-value and can appear on both sides of
an assignment statement.

Although C/C++ has a pointer type, there is no type name for pointers. A pointer is declared by the type to
which it points. For example:

int i = 137, *j;

j = &i;

Variable i is an integer and j is a pointer variable pointing to the integer variable i or *j, which becomes
an alias (another name) of the variable. In other words, variable i has two names: i and *j. Assume that
the compiler has associated the variable i with the address 100, then the statement “ j = &i;” will assign
100 to j.

A pointer variable is a variable too. We can define another pointer variable to point to a pointer variable.
For example, we can extend the above example to

int i = 137, *j = 0, **k = 1; // 1

j = &i; // 2

k= &j; // 3

*j = 0; // 4

**k = 1; // 5

60

In the example, k is a pointer variable pointing to the pointer variable j. Assume the compiler has allocated
address 100 to i, 160 to j, and 120 to k. Initially, the three variables are independent, as shown in Figure
2.8. Please note the initializations “*j = 0, **k = 1;” at line 1 put the value 0 in variable j and put the
value 1 in variable k. This is different from the assignment statements at lines 4 and 5, where 0 and 1 are
put into the variable *j and **k, respectively! Here, you can see again that static semantics (context) and
dynamic semantics are different!

Figure 2.8. Variables i, j, and k are declared as independent variables at line 1 of the code.

After the execution of the statement at line 2, the address of variable i is put in j, resulting in j pointing to
i (holding i’s address); and after the execution of the statement at line 3, the address of variable j is put in
k, resulting in k pointing to j (holding j’s address). The new relationship between the three variables i, j,
and k after statements at lines 2 and 3 is illustrated in Figure 2.9.

Variable i is initialized to value 137. Using the address-of operator, statement “j = &i;” puts the address
of i, 100, into pointer variable j. Statement “k = &j;” puts the address of j, 160, into pointer variable k.
On the other hand, we use the dereferencing operator to access the variable pointed to by the pointers. Since
k holds the address of j, we can use *k to access j, or *k becomes an alias of j. Similarly, since j holds
the address of i, we can use *j to access i, or *j becomes an alias of i. Furthermore, since *k is an alias
of j, **k is an alias of i too, that is, i has two aliases: *j and **k. However, since &i is an r-value (not a
variable), we cannot perform an &&i operation.

Figure 2.9. Relationship between variables and their pointers after lines 2 and 3.

At lines 4 and 5, both assignment statements modify variable i (*j and **k are aliases of i), resulting in
the variable i being first changed from 137 to 0, and then changed from 0 to 1. If we compare the effect of
these two statements with the initialization at line 1, we can see that similar assignment operations in the
initialization part (contextual structure) and in the execution part (semantic structure) have different effects.

In this section, we discussed only the concept, the declaration, and the assignment of pointer variables. We
will discuss more applications of pointers in the following sections. It will make a lot more sense when we
combine pointer type with other complex data types.

2.4.3 String

There is no specific string type in C. Any array of characters can be considered a string, and thus a string
variable can be declared as an array of characters, for example:

137

i

0

j

1

k

100160120 137

i

0

j

1

k

100160120

137

i

100

j = &i

160

k = &j

k **k

&i is a valuej is the name of a variablek = &&i is not valid!

*k

*k is a name of the variable whose
address is in k. *k is an alias of j

**k is a name of the variable whose
address is in *k. **k is an alias of *j

100160
120

*j

61

char str1[] = {'a', 'l', 'p', 'h', 'a'}; // initialized as an array

char str2[] = "alpha"; // initialized as a string

char str3[5]; // without initialization

As can be seen from the example, there are two different ways to initialize an array of characters in the
declaration. The effect of these two initializations is slightly different.

The first declaration and initialization uses exactly the same method that declares and initializes any array,
and thus str1 is 100% an array of characters. On the other hand, we can also consider and use str1 as a
string. It has all the features that an array of characters should have. For example, we can modify the string
in the following code and print the modified string

char str1[] = {'a', 'l', 'p', 'h', 'a'};

for (i = 0; i < sizeof(str1); i++) {

 str1[i] += 1; // same as str1[i] = str1[i]+1;

 printf("%c", str1[i]);

}

printf("\t sizeof(str1) = %d\n", sizeof(str1));

As expected, the output of the code is
bmqib sizeof(str1) = 5

The second initialization indicates to the compiler that the array of characters is considered a string. In this
case, the compiler will append a null terminator (null character) ‘\0’ to the end of the string. In the ASCII
table, the code for the null character is 0 (seven binary zeros). Please notice that the code for the digit ‘0’
is 48. Appending the null character to the end of a string increases the size of the string by one, as shown
in the following code.

char str2[] = "alpha";

for (i = 0; i < sizeof(str2); i++) {

 str2[i] += 1;

 printf("%c", str2[i]);

}

printf("\t sizeof(str2) = %d\n", sizeof(str2));

The output of the code is:
bmqib sizeof(str2) = 6 // '\0'is not a printable character

To have the same effect, one can use the following initialization to append the ‘\0’ to the end of the string:
char str4[] = {'a', 'l', 'p', 'h', 'a', '\0'};

As we discussed in the array section, we can specify the size in the declaration. If the size of the array is
specified and the size is smaller than “string_length+1,” the ‘\0’ character and possibly some characters of
the string cannot be stored in the variable. This is called truncated initialization. For example:

char str5[5] = "alpha";

char str6[4] = "alpha";

In this example, the null terminator ‘\0’ will not be stored in str5; furthermore, the last “a” and the null
terminator are not stored in str6. Figure 2.10 shows the memory map and initialization of str1 through
str6.

62

Figure 2.10. Memory allocation and initialization of six strings.

A number of string functions have been defined in the string package <string.h>and related library
packages. A list of useful string and character manipulation functions is given in Table 2.3.

Having introduced the string functions, we can use the strlen(str) to replace the sizeof(str) in the
previous example. In fact, sizeof(str) worked in that example because each character takes exactly one
byte and sizeof(str)returns the number of bytes. The program would not work if we had used the
wchar_t (two bytes per character) type instead. However, strlen(str)will work in both cases. Another
difference, sizeof will include the byte used to store the null terminator ‘\0’, while strlen does not.

Notice that some environment, such as Visual Studio, implemented a new set of string library functions
with an extended name, such as strcpy_s(str1, str2) and strcmp_s(str1, str2). These
functions added security features to prevent code attacks at the instruction level, such as the return-oriented
programming (ROP) attacks. An ROP attack combines code sequences in library functions to create
malicious functions by changing the return address of function calls. This kind of attack does not need to
inject malicious code into a system; instead, it modifies the return addresses on system stack.

So far, we have discussed the string as an array of characters. A string can also be defined by a pointer to a
character or, more accurately, a pointer to the first character of a string. For example, the declaration

 char *p = "hello, ", *q = "world", *s;

declares three pointer variables p, q, and s, each pointing to a character type variable. Pointer variables p
and q are initialized to values that point to a string, while s is not initialized. Now the question is, what is
the difference between the array-based strings and the pointer-based strings?

str1

size = 5

a l p h a str2

size = 6

a l p h a \0 str3

size = 5

str4

size = 6

a l p h a \0 str5

size = 5

a l p h a str6

size = 4

a l p h

str1

size = 5

a l p h a str2

size = 6

a l p h a \0 str3

size = 5

str4

size = 6

a l p h a \0 str5

size = 5

a l p h a str6

size = 4

a l p h

63

Library Function Description Example
stdlib.h atoi(str) Convert a numeric string into an

integer
atoi("356") returns 356
as an integer

itoa(i, str, base) Convert an integer i to a string
using the specified base and link
the result to pointer str

itoa(356, str, 10)
results in pointer str
pointing to string "356".

stdio.h getc(stdin) Read a character from keyboard ch = getc(stdin);
gets(str) Read a string from keyboard gets(s);

strcpy(str, s);
putc(ch, stdout) Print a character onto screen ch = 'a';

putc(ch, stdout);
string.h strcat(str1, str2) Concatenate str2 to the end of str1 strcat (str, "hello world");

strncat(str1, str2, n) Concatenate the first n characters
(substring) of str2 to the end of str1

strcat (str, "hello world", 3);

strcmp(str1, str2) Return 0 if str1 == str2,
Return <0 if str1 < str2,
Return >0 if str1 > str2,

if (strcmp(s1, s2))
y = x+1;

strncmp(str1, str2, n) Same as strcmp, except only
compare the first n characters

if (strncmp(s1, s2, 3))
y = x+1;

stricmp(str1, str2) Same as strcmp, except letter
comparisons are case insensitive

if (stricmp(s1, s2))
y = x+1;

strcpy(str1, str2) Copy str2 into str1 strcpy(str, "hello world");
strlen(str) Return the length of str L = strlen(str);

ctype.h tolower(ch) Return the lowercase equivalent tolower('D') returns 'd'
toupper(ch) Return the uppercase equivalent toupper('b') returns 'B'

Table 2.3. Useful library functions for string and character manipulation.

We can examine the following example to see in detail the differences and similarities between array-based
strings and pointer-based strings.

#include <stdio.h>

#include <string.h>

void main (void) {

 char p1[] = "hello", q1[] = "this is an array-string", s1[6]; //1

 char *p2 = "Hi", *q2 = "this is a pointer-string", *s2=0; //2

 char *temp; //3

// s1 = p1; // Array name cannot be a L-value //4

// s1 = "hi"; // Array name cannot be a L-value //5

 strcpy(s1, p1); // We must use string-copy function //6

 printf("s1 = %s\t len-s1 = %d\n", s1, strlen(s1)); //7

 strcpy(s1, q1); //8

 printf("s1 = %s\t len-s1 = %d\n", s1, strlen(s1)); //9

64

 printf("s1 = %s\t size-s1 = %d\n", s1, sizeof(s1)); //10

 for (temp = s1; temp < s1+strlen(s1); temp++) //11

 *temp += 1; //12

 printf("s1 = %s\n", s1); //13

 for (temp = &s1[0]; temp <&s1[0] + strlen(s1); temp++) //14

 *temp −= 1; //15

 printf("s1 = %s\n", s1); //16

// strcpy(s2, p2); //17

 s2 = q2; //18

 printf("s2 = %s\t len−s2 = %d\n", s2, strlen(s2)); //19

 printf("s2 = %s\t size−s2 = %d\n", s2, sizeof(s2)); //20

 for (temp = s2; temp < s2+strlen(s2); temp++){ //21

// *temp += 1; //22

 }

 strcpy(s1, q2); //23

 for (temp = s1; temp < s1+strlen(s1); temp++) //24

 *temp += 1; //25

 printf("s1 = %s\t len−s1 = %d\n", s1, strlen(s1)); //26

}

All incorrect statements are commented out so that the program can be compiled and executed. The output
of the program is

s1 = hello len−s1 = 5
s1 = this is an array-string len−s1 = 23
s1 = this is an array-string size−s1 = 6
s1 = uijt!jt!bo!bssbz.tusjoh

s1 = this is an array-string

s2 = this is a pointer-string len−s2 = 24
s2 = this is a pointer-string size−s2 = 4
s1 = uijt!jt!b!qpjoufs.tusjoh len−s1 = 24

Now we explain each statement in the program.

Statement 1 declares three array-based strings p1, q1, and s1. Variables p1 and q1 are initialized to a string
while s1 is not initialized.

Statement 2 declares three pointer variables p2, q2, and s2, each pointing to a character type variable.
Variables p2 and q2 are initialized to values pointing to a string while s2 is not initialized.

Statement 3 declares a pointer variable “temp,” to be used as a temporary pointer variable.

Statement 4 tries to assign the string variable p1 to string variable s1. A compilation error occurs, because
s1 is in fact an array name. We cannot assign anything to an array name. We can assign a value only to an
element of an array (e.g., “s1[0] = ‘a’;” is a valid assignment).

Statement 5 tries to assign a string literal (value) to s1. For the same reason stated above, the statement
causes a compilation error.

65

The correct way to assign a string variable or a string literal to an array-based string is to use the library
function strcpy(s1, p1). In statement 6, string p1 is copied into string s1 correctly and printed correctly
in statement 7.

Statement 8 copies q1 into s1. String s1 and its length strlen(s1) are correctly printed in statement 9
(see output of the program). Please note that the length of s1 is declared to be 6. How can the program put
24 characters in 6 places? This is in fact a semantic error that the compiler does not check. The runtime
system could handle the error by checking the sizes and lengths of the two arrays in strcpy and prevent a
longer array to be string-copied into a shorter array. However, these kinds of checks will slow down the
execution of the program, and the designers of C decided to leave the responsibility to the programmers!
As a programmer, you should know the lengths of the two arrays. If you really do not, you can always use
the strlen function to find the lengths; for example, you can use the following statement to replace
statement 6:

 if (sizeof(s1) >= strlen(p1)) strcpy(s1, p1); else printf("error\n");

We still have not answered the question of how to put 24 characters in 6 places. What has happened is that
the 18 extra characters are appended to the 6 declared memory locations, as shown in Figure 2.11.

Figure 2.11. A strcpy operation may illegally use more space than what is declared.

Before we perform the strcpy, s1 contains 5 characters and the size of s1 is 6, as specified in the
declaration. After we have performed the strcpy, a 23-character string is copied to the memory location
starting from address s1. Obviously, the string goes beyond the limit of the size of s1. That is why we can
still print the string s1 with all characters, because the printf function starts from s1 and stops when the
character ‘\0’ is detected.

The problem is that the use of memory beyond the declared boundary is unknown to the compiler and the
runtime system. Please note that in the output of print-statement 10, the size of s1 is still 6, even if a 23-
character long string has been copied into s1. There are three possibilities:

(1) The locations are not allocated to any variable and you are lucky;

(2) The locations are allocated to other variables and you have overwritten the values of those variables;

(3) The locations are allocated to other variables and your values will be overwritten later.

In cases (2) and (3), your program may crash or, even worse, still behave normally but produce incorrect
results that go undetected and cause much more damaging consequences. We explained in Chapter 1 that
C/C++ use weak type checking. As you can see here, C/C++ are also weak in runtime checking, which
leaves a huge responsibility entrusted to the programmers.

Now we continue to discuss the example. In statement 11, “temp = s1;” means to assign the address of
s1 (or the address of the first element s1[0]) to a pointer variable temp. Note that we use &x to obtain the
address of a simple variable x, and we simply use the array name s1 to obtain the address of an array s1

s1

length = 5, size = 6

h e l l o \0Before copy

s1

length = 23, size = 6

t h i s iAfter copy s a n a r r a y - s t r i n g \0

66

(or the address of the first element of the array). In some C compilers, you can use either &s1 or s1 to
obtain the address of array s1. However, in C++, you can use the array name only to obtain the address of
the array: Please also note that “temp = s1;” is same as “temp = &s1[0];” because s1[0] is a simple
variable of character type, not an array (see the use in statement 14). In the next part of the for-loop, we use
“temp < s1+strlen(s1);” to test if the value (address) of temp is less than the initial address of s1
plus the length of s1. And then we increment temp in the next part.

In statement 12, we do “*temp += 1;”, which means we increment the value pointed to by the pointer
variable temp. The statement is the same as “(*temp)++;”, but not the same as “*(temp++);”, which
increments the pointer value, instead of the pointed value. Please note that “*temp++;” is the same as
“*(temp++);”, because the unary operators * and ++ operate at the same precedence level. However, they
associate from RIGHT to LEFT! Therefore, in “*temp++;”, temp associates with ++ before *, and hence
“*(temp++);” gets evaluated as “*temp++;”.

Statement 13 will print the string in which every character is changed to the next character in the ASCII
code. For example, s is changed to t, h is changed to i, i is changed to j, etc.

Statement 14 is equivalent to statement 11, and statement 12 is equivalent to statement 13 in structure, and
it reverses (decrypts) the encryption in statement 12. Statement 16 prints the decrypted string that is same
as the string before encryption.

We have discussed array-based strings so far, and now we turn to discuss pointer-based strings.

In statement 17, we try to do what we did in statement 6: string-copy p2 to s2. However, the attempt will
cause a compilation error. Thus, we commented the statement out so that we can continue with the other
statements. The reason for this compilation error is that s2 is a pointer variable and there is no memory
allocated for a string. In the declaration in line 2, “char ... *s2=0;” means that s2 is declared as a
pointer variable to char and the pointer is initialized to 0. It does not mean that the pointer is initialized to
the address of the string “0.” However, should we use “char ... *s2="0";”, it does mean that the
pointer is initialized to the address of string “0.”

In statement 18, we assign q2 to s2. We assign the value of q2 (a pointer value) to pointer s2. Both pointers
point to the same string. Here only pointer manipulation is involved. No string duplication is performed, as
shown in Figure 2.12.

Figure 2.12. Both pointers q2 and s2 point to the same string.

Statement 19 prints the string pointed to by s2 and its length. Statement 20 does not print the size of the
string; instead, it prints the size of the pointer variable, which is 4 bytes (same as the size of an integer).

Statement 21 is similar to statements 11 and 14. Statement 22 tries to modify the character pointed to by
temp, as we did in statements 12 and 15. However, we will have a runtime error. In C/C++, if a string is

s2

q2

length = 24, size = 6

t h i s i s a p o i n t e r - s t r i n g \0

null
before

after

size = 4

67

assigned to a pointer-based string variable, the string is a string literal and cannot be modified. If we try to
modify it, we will encounter a runtime error. Thus, we commented out this statement so that we can continue
to compile other statements.

Although we cannot modify a string initialized as a pointer-based string, we can modify the string if it is
copied into an array. Statement 23 copies pointer-based string q2 into s1 and then we can modify the string
in s1 in statements 24 and 25. Statement 26 prints the modified string.

Through this example, we explained the following aspects of a string in C/C++.

We can use the array of characters to declare a string variable and initialize the string variable to a
string literal. We can access (read and write) the characters in the string as array elements. We can
assign the initial address of the array (string) to a pointer variable and use this pointer to access
(read and write) the characters in the string.
We can declare a string variable using a pointer to character type and initialize the string to a string
literal. We can read the characters in the string, but we cannot modify the characters.
We can copy a pointer-based string into an array and we can modify the characters in the array.

A multidimensional array is stored in memory as a sequence of its elements or a one-dimensional array and
can be processed easily using a pointer. We start with an example of 2-D array of characters.

#include <stdio.h>

void main(void) {

 char *p = 0, ma[2][4]; // declare a 2x4 array of characters

 ma[0][0] = 'C'; ma[0][1] = 'a'; ma[0][2] = 'r'; ma[0][3] = 'B';

 ma[1][0] = 'i'; ma[1][1] = 'k'; ma[1][2] = 'e'; ma[1][3] = '\0';

 p = &ma[0][0];

 while (*p != 0) {

 printf("%c", *p);

 *p = *p+1;

 p++;

 }

 printf("\n");

 p = &ma[0][0];

 while (*p != 0) printf("%c", *p++);

}

In the example above, a 2-D array is declared and initialized. We use pointer variable p to parse through
each element, adding 1 to each element. The characters before the addition and after the addition are printed
and the output of the program is shown in the screenshot.

We can further define 3-D arrays. The code below defines a 2-D array of strings. As a string is an array of
characters, the array is in fact a 3-D array of characters.

As we initialize the 2-D array using string values, the null terminator is appended to the end of each string.
To print these strings, we use character print, and thus use the 3-D array element ma[i][j][k] to print
each character. We use ma[i][j][k]!='\0' as the termination condition of the inner-most for-loop.
Another option is to use the string length operation strlen() in the condition for the inner-most for-loop:
for (k=0; k < strlen(ma[i][j]); k++).

68

#include <stdio.h>

void main() {

 char *ma[2][4] = {{"Car", "Bike", "Boat", "Plane"},

 {"Horse", "Cow", "Dog", "Cat"}};

 int i=0, j=0, k=0;

 for (i=0; i<2; i++) {

 for (j=0; j<4; j++) {

 for (k=0; ma[i][j][k]!='\0'; k++)

 printf("%c", ma[i][j][k]);

 printf("\n");

 }

 printf("\n");

 }

}

We can also use pointer operations to access the 3-D array, in which we obtain the address of each string
through the operation char *p = ma[i][j], and then print each string, as shown in the following code.

#include <stdio.h>

void main() {

 char *ma[2][4] = {{"Car", "Bike", "Boat", "Plane"},

 {"Horse", "Cow", "Dog", "Cat"}};

 int i = 0, j = 0, k = 0;

 char *p = 0;

 for (i = 0; i<2; i++) {

 for (j = 0; j<4; j++) {

 p = ma[i][j]; // Do not use &ma[i][j]

 printf("%s\n", p); // print string

 while (*p!=0)

 printf("%c", *p++); // print char

 printf("\n");

 }

 printf("\n");

 }

}

Each word is printed twice, because we used two different ways to print the words. First, we printed the
entire word as a string, and then we printed each character of a string in a while loop. Notice that we use p
= ma[i][j]; instead of p = &ma[i][j]; because the element of the 2-D array is an array of character,
and the array name is the initial address of the array.

In C++, you can use all the C functions for string processing. However, a C++ library <string> is added to
allow string declaration and processing without explicitly declaring an array of characters. The following
code shows an example of using the string library.

#include <iostream>

#include <string> // This is the library for C++ string operations

using namespace std;

69

void main() {

 string cat1 = "Max", cat2, temp; int length;

 cout << "please enter a name for a cat" << endl;

 cin >> cat2;

 temp = cat1; cat1 = cat2; cat2 = temp; // swap the names of cat1 & cat2

 // One can also treat the string as an array of characters

 length = cat1.size();

 cout << "The length of cat1 is: " << length << endl;

 for (int i = 0; i < length; i++)

 cout << cat1[i];

 cout << endl;

}

Notice that we do not need to use strcpy; instead, we can simply use assignment cat1 = cat2 to copy the
name in cat2 into cat1. Instead of using strlen(cat1) or sizeof cat1, we use cat1.size(), where cat1 is an
object, and .size() is a member function of the object. We will discuss more details about class and object
in the following chapter. The console output of the program is shown as follows:

2.4.4 Constants

Most programming languages allow constants to be declared. However, their implementations depend on
the language definition and the compiler technologies.

C/C++ provides three different ways to introduce constants:

Macro: As discussed in Section 1.4.2, we can use a macro definition to introduce a constant. The
constant will substitute for the name at the preprocessing time. The advantage of a macro constant
is its efficiency. A small constant may fit in an immediate-type of a machine instruction and thus
save a memory access. The disadvantage is that the way a macro is defined is different from the
way a variable is declared and initialized (nonorthogonal).
const qualifier: A constant is a “variable” that a program cannot modify. The advantage is that the
constant is declared and initialized in the same way as a variable is declared and initialized
(orthogonal). However, a memory access is needed in order to access the constant (slower). We
will discuss this kind of constant in this section.
Enumeration constant: We can introduce constants by defining an enumeration type variable.
This topic will be discussed in the following section.

The simplest way to introduce constants in C/C++ is to use the qualifier const before the variable
declaration. For example:

const int min = 5, max = 100, pi = 3.14159265358979;

const char x = 'a', y = 's';

Constants increase the readability of programs. For example, the statement
if (x >= min and x <= max) x = x*x*pi;

is easier to understand than the statement

70

if (x >= 5 and x <= 100) x = x*x*3.14159265358979;

Constants also prevent us from making semantic errors. For example, if we try to modify a constant in a
statement like

max = max + 10;

the compiler will raise a compilation error because max is a constant.

A constant defined by qualifier const is actually a “constant variable” and thus it has a memory address.
We can apply the dereferencing operator on the constant. For example, the statement

temp = &max;

will put the memory address of constant max into the pointer variable temp.

In the following example, we demonstrate that we can even modify a constant variable if we can get around
the compiler’s check.

void main() {

 const int max = 100;

 int *temp; // temp is a pointer to an integer

// max = max + 10; // Compilation error would occur

 temp = &max; // assign the address of max to temp

 *temp = *temp + 10; // max is modified through pointer temp

 printf("max = %d\n", max); // The output is: max = 110

}

Self-checking question: What would happen if we used “#define max 100” to define the constant? Will
the statement “temp = &max;” work?

Through this example, we can see that a constant defined by const qualifier is in fact a variable.

It has a memory location and memory address and we can use the & operator to obtain its address.

Compiler protection is used. A compilation error will occur if you try to modify a const variable. In some
versions of the compiler, a warning, instead of an error, will be given.

It can be modified if you can get around the compiler; for example, using an alias, you can modify a const
variable.

2.4.5 Enumeration type

We have discussed data types predefined in C/C++. Most modern programming languages also provide
mechanisms (type constructors) to allow programmers to define more complex data types. We will discuss
the enumeration type in this section and other complex data types in the following sections.

Enumeration type is usually used for variables that can take an enumerable ordered set of values. Each of
these values is given a name and we use the name to access the corresponding value. These names are
associated with integer values starting from 0. Each enumeration type is a distinct data type.

Enumeration types in C/C++ are defined using the keyword enum. For example:
#include <stdio.h>

typedef enum {

 Sun, Mon, Tue, Wed, Thu, Fri, Sat

71

 } Days;

Days x = Sun, y = Sat;

void main (void) {

 while (x <= y) {

 printf("x = %d\t", x);

 x++;

 }

 printf("\n");

}

The names (constants) in the Days are not initialized and integers starting from 0 will be associated with
each name in the given order. Thus, the type definition above defines seven constants equivalent to:

const int Sun = 0;

const int Mon = 1;

const int Tue = 2;

const int Wed = 3;

const int Thu = 4;

const int Fri = 5;

const int Sat = 6;

The output of the program is
x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

We can also initialize the names in the definition. For example, if we define Days as follows
typedef enum {

 Sun = 1, Mon = 2, Tue = 3, Wed = 4, Thu = 5, Fri = 6, Sat = 7

 } Days;

then the output of the program will be
x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7

We now show a longer example demonstrating the use of enumeration types.
#include <stdio.h>

#include <time.h>

typedef enum {

 red, amber, green

 } traffic_light;

void sleep(int wait); // forward declaration

main() {

traffic_light x = red;

printf("Red:\tStop!\n");

while (1)

 switch (x) {

 case amber:

 sleep(1); //sleep 1 second

 x = red;

72

 printf("Red:\tStop!\n"); break;

 case red:

 sleep(6); //sleep 6 second

 x = green;

 printf("Green:\tGo>>>\n"); break;

 case green:

 sleep(12); //sleep 12 second

 x = amber; printf("Amber:\tBrake...\n");

 }

}

void sleep(int wait) { // Sleep for a specified number of seconds.

 clock_t goal; // clock_t defined in <time.h>

 goal = wait * CLOCKS_PER_SEC + clock();

 while(goal > clock())

 ;

}

In this program, we defined an enumeration type called traffic_light with three possible values: red,
amber, and green. We could use an int type instead. However, the program would be less readable and
prone to error. A snapshot of the output is given as follows.

Red: Stop!

Green: Go>>>

Amber: Brake...

Red: Stop!

Green: Go>>>

Amber: Brake...

...

In this example, the time function clock() in <time.h> is used to obtain the number of clock cycles from
a given point. This function can be used to measure the time between any two points. For example, the
following piece of code can measure the time used by a function foo().

c1 = clock(); // time stamp 1

foo();

c2 = clock(); // time stamp 2

interval = (double) (c2 − c1) / CLOCKS_PER_SEC; // time difference
The time difference computed in this example is in seconds. The precision of this method is 0.001 second.

There is another time function time() that can be used to measure the time in seconds. The following code
shows the use of the time function and other related functions:

#include <stdio.h>

#include <time.h>

main() {

 int n; time_t start, finish; double result, duration;

 time(&start); // get the initial time

 for(n = 0; n < 900000000; n++)

73

 result = 3.1415 * 2.23;

 time(&finish); // get the end time

 duration = difftime(finish, start); // compute difference

 printf("\nThe program takes %2.4f seconds\n", duration);

}

2.5 Compound data types
In this section, we discuss compound data types that are composed of several data types, including structure,
union, array of structures, linked list of structures connected by pointers, and file types.

2.5.1 Structure types and paddings

A structure is created using the keyword struct. The general way to define a structure type is
struct type_name {

 type field1;

 type field2;

 . . .

 type fieldn;

 } struct_variable_name;

For example:
struct stype {

 char ch;

 int x;

} u, v; // We can declare variables of the type here.

void main() {
 struct stype s, t; // We can use the type to declare variables here too.

 ... // The keyword struct must be used before type name.

}

Now we will study an example with a structure type.
struct Contact { // define a type that can hold a person's detail

 char name[30];

 long phone;

 char email[30];

};

void main() {

 struct Contact x, y, z;

 strcpy(x.name, "Mike Smith");

 x.phone = 9650022;

 strcpy(x.email, "mike.smith@asu.edu");

 strcpy(y.name, "Jane Miller");

 y.phone = 9650055;

 strcpy(y.email, "jane.miller@asu.edu");

}

74

As you can see from the example, we use x.name notation to access the name field of the variable x. We
will see more examples of structures in the following sections, where we will combine the structure types
with the array and pointer types.

The processor reads integers and floats in words. If a structure contains an integer, a pointer, or a float, the
structure size must be aligned into multiples of 4 in a 32-bit computer and multiples of 8 in a 64-bit
computer. Consider a 32-bit computer. If a structure has a member of integer, pointer, or float, and a
member whole size is not a multiple of 4, padding is needed to align the data in memory. It may need
padding of one, two, or three bytes to pad one part of a structure. Consider the following snippet of code:

struct personnel {

 char name[16];

 int phone;

 char address[24];

 char gender; // F or M

 // char CSmajor; // Y or N

} person;

printf("struct size = %d", sizeof person);

If you count the bytes, the struct variable person will need 45 bytes. However, the printf will print
the size of person = 48.

The reason is as follows. The structure contains an integer variable phone. An integer will be read at
machine language level by a “Load Word” instruction, and thus the entire structure will be read using the
Load Word instructions. As shown in the following memory map, the compiler will add three bytes before
the character type variable to make the byte into a four-byte word. As the result, the total size of the person
variable is 48.

In the code, uncommenting the two lines of code adds one more character variable into the structure, as
shown below:

struct personnel {

 char name[16];

 int phone;

 char address[24];

 char gender; // F or M

 char CSmajor; // Y or N

} person;

printf("struct size = %d", sizeof person);

The total size of the structure will remain unchanged as 48. In this case, the three bytes of padding will
reduce to two bytes only, as shown in the following map:

The order of the variables in a structure will be preserved by the compiler when it allocates the memory. If
the character types are separated by a Word-type variable, multiple paddings are required. Consider the
following snippet of code, where the variable gender is moved before the variable phone:

16 bytes 244 1 1 1 1 Size = 48

16 bytes 244 1 1 1 1 Size = 48

75

struct personnel {

 char name[16];

 char gender; // F or M

 int phone;

 char address[24];

 char CSmajor; // Y or N

} person;

printf("struct size = %d", sizeof person);

The memory map is given as follows:

Two paddings of three bytes each are added by the compiler, resulting in a structure of 52 bytes. These
examples show that it will result in a more efficient code if the character type variables are kept together in
the structure definition.

Padding is required only for word type of variables, such as int, float, and pointer. If a structure contains
character type of variables only, no padding will be added, irrespective of whether the total size is a multiple
of four or not. The compiler will use “Load Byte” instructions to read the structures that contain character
(byte) type only. Consider the following code, where the int variable phone is removed:

struct personnel {

 char name[16];

 char gender; // F or M

 char address[24];

 char CSmajor; // Y or N

 char KnowJava; // Y or N

} person;

printf("struct size = %d", sizeof person);

The program will print the size of person = 43, which is not a multiple of 4.

Consider the following snippet of code in a 32-bit computer:
struct contact {
 char name[30];
 int phone;
 char email[30];
} x;

What is the size of variable x in bytes? It is incorrect to simply add 30+4+30. Because there is an integer
type involved, two padding bytes must be added to name and email arrays, and thus, the total number of
bytes for variable x is 68, instead of 64. However, if we keep the name and email members together in the
order, the size will become 64.

2.5.2 Union

A union type variable is a region of shared memory that, over time, can contain different types of values.
At any given moment, a union can contain only one value. Programmers must make sure the proper type is
used at the proper time. The general way to define a union type is

union union_name {

16 bytes 244 1 1 1 1 Size = 521 1 1 1

76

 type field1;

 type field2;

 . . .

 type fieldn;

} union_variable_name;

For example:
union utype {

 char ch;

 int x;

} v;

void main(){
 union utype s, t; //We can use the type to declare variables here too.

 ... // The keyword union must be used before type name.

}

In this example, we define a union type called utype and declare a variable v of utype. Similar to a
structure type, we can have multiple data fields in the type definition. In this example, there are two data
fields. The field variable x belongs to the int type and takes 32 bits or 4 bytes (in a 32-bit machine) and
ch takes 8 bits or 1 byte. If the union type is defined as a structure type, the variable v will have 4+1 bytes
of memory allocated. However, in the union type, all data fields share the same memory. If these data fields
require different sizes of memory, the largest size among the data fields will be allocated and the smaller
sized fields will occupy a part of the memory. In this example, 4 bytes of memory will be allocated and the
smaller field ch will share the first byte of x.

The way we access a union type variable is similar to that of the structure type variable. For example,
v.x = 124000; // put an integer value into the data field x

v.ch = 'C'; // put a character value into the data field ch.

Since the two data fields share a part of the memory, the second assignment will overwrite the first byte of
v.x, destroying the integer value in v.x. Obviously, if we do not use the data fields carefully, we can easily
make mistakes in programming.

The question is why do we need such an unsafe data structure? The reason is that it could be useful in
certain situations. The following example depicts such a situation where union type variables make the
program more elegant.

Assume we want to define a data type to store personnel information for both faculty members and students
in a university. The faculty and students have ID numbers with different lengths. A person in a university
has either a faculty ID or a student ID. If we use two separate data fields for faculty ID and student ID, we
will use only one of the two data fields for every record. If we use only one data field and leave the extra
bytes free when an ID number does not have enough characters to fill all bytes, we could lose our view of
whether we are dealing with a student record or a faculty record. A union type would solve the problem, as
shown in the following program:

#include <stdio.h>

#include <string.h>

struct Personnel { // Define a structure type called Personnel

 char name[30];

 long phone;

77

 union identity { // Define a union type inside the structure type

 char facultyid[8]; // Two alternative data fields are defined here

 char studentid[12];

 } id; // We declare a variable of the union type here.

};

main(){

 struct Personnel x, *p; // Declare a Personnel type variable and a
pointer

 strcpy(x.name, "Mike Lee"); // Copy a name into the name field

 x.phone = 21400000; // Assign a number to phone field

 strcpy(x.id.studentid, "1999eas1234"); // Copy student ID

 printf("x.id.studentid = %s\n", x.id.studentid);

 strcpy(x.name, "Jane Smid"); // Use the same x for a faculty record

 x.phone = 9659876;

 strcpy(x.id.facultyid, "cse1234");

 printf("x.id.facultyid = %s\n", x.id.facultyid);

 p = &x;

 printf("p->id.studentid = %s\n", p->id.studentid);

 printf("p->id.facultyid = %s\n", p->id.facultyid);

}

In this example, the same variable is used for a student record and a faculty record. The different ID field
names allow us to differentiate which record we are handling. In the next chapter, we will discuss the
generic class in C++, which is a more general way of associating different classes with a class reference.

2.5.3 Array of structures using static memory allocation

Structure types will make more sense if we combine them with array and pointer types to form collections
of structures. In the following example, we define an array of structures to form a database.

In the following program, Contact is a structure type with three data fields. The declaration
struct Contact ContactBook[max];

declares an array of structures with 100 entries. Then we use the tail variable as the index to access the
next unused element of the array: ContactBook[tail]. Figure 2.13 shows the structure of the array.

Since the element of the array is of the structcontact type with three data fields, we use the dot-notation
to access the data fields of the ith element:

ContactBook[i].name

ContactBook[i].phone

ContactBook[i].email

78

Figure 2.13. Array of structures, its element, and members of the element.

The array variable ContactBook[max] is a global variable, that is, a variable that is outside all functions.
The memory locations for global variables are statically allocated by the compiler during compilation time.
We call this kind of memory allocation static memory allocation. In this example, the compiler will
allocate an array of 100 (max) elements before the program starts. Assume a long integer takes 4 bytes,
and the name and email take 30 bytes each. The total number of bytes needed for one array element is then
64 bytes. The array of 100 elements will take 6400 bytes.

/* This program demonstrates how to define an array of structures.

 It statically allocates memory for the variables of structure type */

#include <stdio.h>

#include <string.h>

#define max 100

struct Contact { // define a node that can hold a person's detail

 char name[30];

 long phone;

 char email[30];

};

struct Contact ContactBook[max]; // an array of structures, 100 entries

int tail = 0; // tail is defined here as a global variable

void branching(char c); // forward declaration of a function

int insertion(); // forward declaration of a function

int search(); // forward declaration of a function

// void deletion(); // not implemented in this example

// void printall(); // not implemented in this example

void main() { // main() first prints a menu for selection

 char ch = 'a';

 while (ch != 'q') {

 printf("enter your selection\n");

 printf(" i: insert a new entry\n");

 printf(" s: search an entry\n");

 printf(" d: delete an entry\n"); // not implemented

name
phone
email

name
phone
email

name
phone
email

. . .

ContackBook[]

0

1

99

name
phone
email

ContackBook[i]

The ith Members of

the ith element

ContackBook[i].name

ContackBook[i].phone

ContackBook[i].email

element

name
phone
email

name
phone
email

name
phone
email

. . .

ContackBook[]

0

1

99

name
phone
email

ContackBook[i]

The ith Members of

the ith element

ContackBook[i].name

ContackBook[i].phone

ContackBook[i].email

element

79

 printf(" p: print all entries\n"); // not implemented

 printf(" q: quit\n");

 fflush(stdin); // flush input buffer to make

 ch = getc(stdin); // sure getc reads correctly

 branching(ch);

 }

}

void branching(char c) { // branch to different tasks

 switch(c) {

 case 'i': insertion(); break;

 case 's': search(); break;

 case 'q': printf("You exit the program\n"); break;

 default: printf("Invalid input\n");

 }

}

int insertion() { // insert a new entry

 if (tail == max) {

 printf("There is no more place to insert\n");

 return −1;
 }

 else {

 printf("Enter name, phone, email\n");

 scanf("%s", ContactBook[tail].name);

 scanf("%d", &ContactBook[tail].phone);

 scanf("%s", ContactBook[tail].email);

 tail++;

 printf("The number of entries = %d\n", tail);

 return 0;

 }

}

int search() { // search and print phone and email via name

 char sname[30];

 int i;

 printf("please enter the name to be searched\n");

 scanf("%s", sname);

 for (i=0; i<tail; i++)

 if (stricmp(sname, ContactBook[i].name)== 0) {

 printf("phone = %d\n", ContactBook[i].phone);

 printf("email = %s\n", ContactBook[i].email);

 return 0;

 }

 printf("The name does not exist\n");

 return −1;
}

80

In the next chapter, we will discuss in detail the three different memory areas: static, stack, and heap, the
mechanisms for allocating memory from these three areas, as well as how memory is deallocated (garbage
collection).

2.5.4 Linked list using dynamic memory allocation

The advantage with static memory allocation is that the memory for the variables is already available when
we want to store data in them. The problem is that we need to know the maximum number of elements in
advance, which is possible in some cases and not possible in some other cases. If we overestimate the data
amount, we waste memory. If we underestimate the data amount, we have to stop the program, modify the
max value, and recompile the program. To solve this problem, we can use dynamic memory allocation
that allocates memory to variables during the execution by a function call.

In C, the function that dynamically allocates memory is
void *malloc(size_t size);

The function takes one parameter that is of type size_t. The type size_t is usually an unsigned int.
The parameter specifies the number of bytes to be allocated. For example, if you need a memory location
for an integer variable, then you can call

p = malloc(4);

However, this statement will work only on a machine that uses 4 bytes for an integer. If you run your
program on another machine with a different word-length, the statement will cause a problem. A better way
to allocate memory for a given type of variable is to call malloc (sizeof(type_name)). For example,
if you need memory for an integer variable, it is better to do

p = malloc(sizeof(int));

The function malloc returns a pointer to the initial address of the memory. If the runtime system runs out
of memory, it returns null.

Please notice that the notation “void *” means here that the malloc function returns a generic pointer
that can point to a variable of any data type. This is possible because all pointer types are structurally
equivalent and C mainly uses structural type equivalence in its type checking. Of course, you can also make
an explicit type casting to convert the generic pointer type to the specific type, for the purpose of readability,
for example:

p = (int *) malloc(sizeof(int));

casts the return value to an integer type pointer.

In C++, a new dynamic memory allocation operator has been introduced:
class_name p = new class_name;

The new operator allocates the right amount of memory for a variable (object) of the given class and returns
a pointer of that class. Java uses a similar operator to dynamically allocate memory. The new operator will
be explained in more detail in the next chapter.

Since the malloc function returns a generic pointer, we often combine dynamic memory allocation with
pointers to define a collection of structures. The following example re-implements the array of structures
using dynamic memory allocation.

/* This program demonstrates how to define a linked list of structures.

 It dynamically allocates memory for the variables of structure type.

 Only the parts that are different from the array of structure example

81

 are given here. */

#include <stdio.h>

#include <stdlib.h> // used for malloc
struct Contact { // define a node holding a person's detail

 char name[30];

 long phone;

 char email[30];

 struct Contact *next; // pointer to Contact structure

} *head = NULL; //head is a global pointer to first entry

void branching(char c); // function forward declaration

int insertion();

int search();

// void deletion();

// void printall();

int insertion() { // insert a new entry at the beginning
 struct Contact *p;

 p = (struct Contact *) malloc(sizeof(struct Contact));

 if (p == 0) {

 printf("out of memory\n"); return −1;
 }

 printf("Enter name, phone, email \n");

 scanf("%s", p->name);

 scanf("%d", &p->phone);

 scanf("%s", p->email);

 p->next = head;

 head = p;

 return 0;

}

int search() { // print phone and email via name

 char sname[30];
 struct Contact *p = head;

 printf("please enter the name to be searched\n");

 scanf("%s", sname);

 while (p != 0)

 if (strcmp(sname, p->name)== 0) {

 printf("phone = %d\n", p->phone);

 printf("email = %s\n", p->email);

 return 0;

 }

 else p = p->next;

 printf("The name does not exist\n");

 return −1;
}

82

In the example, the Contact type is redefined with an extra field next:
 struct Contact *next; // pointer to Contact structure

The next field is a pointer to a Contact type variable. We use it to form a linked list. Please note that we
need to use the keyword struct whenever we refer to a structure type.

In the insertion function, we use
 p = (struct Contact *) malloc(sizeof(struct Contact));

to allocate the right amount of memory for a variable of Contact type, and we link the initial address of
this memory chunk to a pointer variable p. The type casting makes it clearer that the memory is allocated
for a Contact type variable. Using malloc(sizeof(struct Contact)), instead of using malloc(68), can avoid
calculation error, and particularly, avoid calculating the padding bytes.

Figure 2.14 illustrates the insertion process. Assume that the linked list already has two nodes and a new
node is being inserted.

This insertion function inserts the new node at the beginning of the linked list. You can also insert the new
node at the end (or at any required position). In this case, you can use a temporary pointer, say temp, and
move temp to the last node before performing insertion, as shown in the following code.

Figure 2.14. Insert a new node at the beginning of a linked list.

int insertion_at_end() { // insert a new entry at the end
 struct Contact *p, *temp;

 p = (struct Contact *) malloc(sizeof(struct Contact));

 if (p == 0) {

 printf("out of memory\n"); return −1;
 }

 printf("Enter name, phone, email \n");

 scanf("%s", p->name); scanf("%d", &p->phone); scanf("%s", p->email);

 p->next = 0;

 if (head == 0) head = p;

 else {

 while (temp->next != null)

 temp = temp->next; // Find the last node

 temp->next = p; // Link the new node

Joe
1122556

joe@mail.net
next

John
1122334

jon@mail.net
0

head

Before insertion:

Tom
1122667

tom@mail.net

A new node is created:

p

Joe
1122556

joe@mail.net
next

John
1122334

jon@mail.net
0

head

After insertion:

Tom
1122667

tom@mail.net

pInsertion

83

 }

}

Generally, a node can be inserted in any position in a linked list. Figure 2.15 illustrates the insertion process.
It consists of three steps: (1) Find the position where the new node is to be inserted. Use a temporary pointer
variable temp to point to this position. (2) Set the new node’s next pointer to the node next to the node
pointed to by temp. (3) Set the next pointer of the node pointed to by temp to the new node.

In the earlier example of the array of structures, we used the dot-notation to access the data field of a
structure variable. It is different when referring to a data field of a structure pointed to by a pointer variable.
We use the arrow operator (sometimes called pointer-to-member operator) instead; that is, we use

p->name

p->phone

p->email

p->next

Figure 2.15. Insert a new node in the middle of a linked list.

to access the four fields of a Contact structure variable pointed to by p. The differentiation is necessary
because their meanings are different. Examine the piece of code:

struct Contact *p, q;

p = (struct Contact *) malloc(sizeof(struct Contact));

strcpy(p->name, "smith"); // or strcpy(*p.name, "smith");

strcpy(q.name, "miller");

free(p); // return the memory allocated by malloc to the memory heap

p = &q; // p is now pointing to variable q.

In the example, p is a pointer to a Contact structure variable and p has only 4 bytes of memory allocated,
while q is the name of a variable of Contact type, as shown in Figure 2.16. The compiler has allocated the
entire memory that can hold all four data fields to q. Thus, we can directly copy a name “miller” into the
name field of q. Before we can copy anything into the variable pointed to by p, we must first use malloc
to obtain the memory for that variable.

Joe
1122556

joe@mail.net
next

John
1122334

jon@mail.net

head

Tom
1122667

tom@mail.net

p

temp

temp.next = p;

Lee
1122889

lee@mail.net
0

p->next = temp->next;

84

Figure 2.16. Variable q is allocated statically, while the variable pointed to by p is dynamically allocated.

The last statement in the example assigns the address of q to p. Now p is pointing to the variable q. In
other words, now q has another name which is *p. If we do not free (delete) the Contact variable pointed
to by p before we assign the address of q to p, the variable will be completely inaccessible and becomes a
piece of garbage. The “free” function is, in fact, doing the job of garbage collection.

The function free(p) is the opposite of the function p = malloc(size), in that it returns the memory
linked to p to the heap, the pool of free memory. If we keep using malloc to get memory from the heap,
but do not collect the garbage, the heap will eventually be empty and we thus run out of memory. Not
collecting garbage is also called a memory leak. The following examples show memory leak when deleting
a linked list.

Assume that you want to delete the entire linked list pointed to by head. If you simply assign head =
null, the linked list becomes an empty list. However, the memory used by all the nodes in the linked list
becomes uncollectable garbage. What is the result of the following operations?

free(head);

head = null;

This snippet of code will free the memory used by the first node only. The memory used by all the other
nodes will become uncollectable garbage. The correct way of deleting the entire linked list is to use a loop
to free each and every node, as shown in the following snippet of code.

temp = head;

while (temp != null) {

 temp = temp->next;

 free(head);

 head = temp;

}

Garbage collection and memory leak will be discussed in the section on memory management in the next
chapter.

2.5.5 Doubly linked list

When traversing a linked list, you can easily move a temp pointer forward from the head pointer to the end
of the linked list. However, you cannot move the pointer backward along the linked list. If you need a data
structure that can move both forward and backward, doubly linked list is a good solution.

A doubly linked list node has two pointers pointing to the previous node and the next node. The following
code shows a simple example of a doubly linked list. An insertion function is given, which inserts a new
node at the sorted place by name. The id of the Node struct is generated automatically, and the names
are entered from the keyboard. This program can be combined with the complete program of the singly
linked list to allow full functionalities.

#include<stdio.h>

contact structurep

contact structureq

contact structurep

contact structureq

before p = &q; after p = &q;

*p
*p

contact structurep

contact structureq

contact structurep

contact structureq

before p = &q; after p = &q;

*p
*p

85

#include <stdlib.h>

#include<string.h>

#pragma warning(disable: 4996) // disable warning in Visual Studio

struct Node {

 int id; // int size is 4 bytes

 char *name; // name is a pointer, not an array

 struct Node* previous; // pointer to previous node

 struct Node* next; // pointer to next node in list

};

struct Node *head = NULL, *tail = NULL;

int insertion(int i, char* n) {

 struct Node *temp = (struct Node*)malloc(sizeof(struct Node));

 if (temp == NULL) {

 printf("out of memory\n"); return -1;

 }

 temp->id = i;

 temp->name = n;

 if (head == NULL) { // Case 0: the linked list is empty

 head = temp;

 head->next = NULL;

 head->previous = NULL;

 tail = temp;

 return 0;

 }

 else { // Case 1: The list is not empty, insert at the beginning

 if (strcmp(temp->name, head->name) < 0) {

 temp->next = head;

 head->previous = temp;

 head = temp;

 head->previous = NULL;

 return 1;

 }

 };

 struct Node *iterator = head;

 struct Node *follower = iterator;

 while (iterator != NULL) { // Case 2

 if (strcmp(temp->name, iterator->name) < 0) {

 temp->next = iterator;

 iterator->previous = temp;

 temp->previous = follower;

 follower->next = temp;

 return 2;

 }

 follower = iterator;

86

 iterator = iterator->next;

 }

 follower->next = temp; // Case 3

 temp->previous = follower;

 temp->next = NULL;

 tail = temp;

 return 3;

}

int main() {

 int identity = 0;

 char *name1 = malloc(32);

 char *name2 = malloc(32);

 char *name3 = malloc(32);

 struct Node *temp1, *temp2;

 printf("Please enter 3 names:\n");

 scanf("%s", name1); // enter John

 scanf("%s", name2); // enter Mary

 scanf("%s", name3); // enter David

 insertion(identity++, name1);

 insertion(identity++, name2);

 insertion(identity++, name3);

 temp1 = head;

 temp2 = tail;

 printf("ID = %d, name = %s\n", temp1->id, temp1->name);

 printf("ID = %d, name = %s\n", temp1->next->id, temp1->next->name);

 printf("ID = %d, name = %s\n", temp2->id, temp2->name);

 return 0;

}

Notice that dynamic memory is used for name1, name2, and name3 in the main program. It is necessary
in order to keep the memory in the linked list. If a local variable is used for the names, the memory will go
out of scope when function exits. Memory management will be discussed in detail in the next chapter. The
output of the program is as follows:

2.5.6 Stack

A stack is a data structure that can contain a set of ordered items. The items are ordered in such a way that
an item can be inserted into the stack or removed from the stack at the same end. This end is called the top
of the stack.

87

The stack is one of the most important data structures in computer hardware and software design. This
section introduces the basic concept of stack through an example. More applications of the stack will be
further discussed in Chapter 3 when we study memory management, in Section A.2 in Appendix A when
we introduce basic computer architectures, and in A.3 when we discuss the implementation of function
calls at the assembly language level.

Like any structured data type or a data structure, a stack is defined on simpler data types and the new
operations on the data types.

Typically, a stack is defined on an array type. The basic operations defined on the stack are push (add an
element onto the stack top) and pop (remove the top element from the stack). The code below shows the
definition of a stack:

elementType stack[stackSize];

int top = 0;

void push(elementType Element) {

 if (top < stackSize) {

 stack[top] = Element;

 top++;

 }

 Printf("Error: stack full\n");

}

elementType pop() {

 if (top > 0) {

 top−−;
 return stack[top];

 }

 Printf("Error: stack empty\n");

}

Now we use the stack to implement a four-function calculator that supports addition, subtraction,
multiplication, and division operations on floating point numbers. The basic part of the implementation is
the same as the code above, except that the elementType is now float, and four extra arithmetic
functions are included. To perform operations, data are first pushed onto the stack. Every time an operation
is performed, the two data items on the stack top are popped out for operation and the result is pushed back
onto the stack.

#define stackSize 8 // a sample value

#include <stdio.h>

float stack[stackSize];

int top = 0;

void push(float Element) {

 if (top < stackSize) {

 stack[top] = Element;

 top++;

 } else

 printf("Error: stack full\n");

}

float pop() {

88

 if (top > 0) {

 top−−;
 return stack[top];

 } else

 printf("Error: stack empty\n");

}

float add() {

 float y;

 y = pop() + pop(); push(y);

}

float sub() {

 float y;

 y = pop() − pop(); push(y);
}

float mul() {

 float y;

 y = pop() * pop(); push(y);

}

float div() {

 float y;

 y = pop() / pop(); push(y);

}

void main() {

 float x1 = 1.5, x2 = 2.5, x3 = 3.5, x4 = 4.5, x5 = 5.5, x6 = 6.5;

 push(x1); push(x2); push(x3);

 push(x4); push(x5); push(x6);

 add(); sub(); mul(); div(); add();

 printf("final value = %f\n", pop());

}

What is computed in the main program by the sequence of operations add(), sub(), mul(), div(), and
add()? Figure 2.17 shows the stack status after each push operation and after each arithmetic operation.
Initially, stack top = 0. It increments after each push operation. In each arithmetic operation, two pop
operations and one push operation are performed, resulting in the top being decreased by one. The final
value computed is 12.0. After the pop operation performed in the printf statement, the top returns to
zero.

89

Figure 2.17. Stack status after each operation.

2.6 Standard input and output, files, and file operations
So far, we have discussed using memory (variables) to store data. However, memory is only a temporary
place to store data. When we quit a program, all memory allocated to the program is taken back by the
operating system for reuse. If our program has data that need to be stored for future use, we need to store
the data into the permanent storage of a computer the disk.

2.6.1 Basic concepts of files and file operations

Data stored on disk are organized in files. We consider a file as a structured data type and we access data
in a file using a pointer to an object of type FILE, which records whatever information is necessary to
control the stream of data.

As we know that disk operations are extremely slow, million times slower than memory operations, as it
involves mechanical rotations of the disk and sliding of the read/write heads. The challenge is to make file
operations faster. The solution is to use a buffer in the memory to hold a large block (e.g., 1024 bytes) of
data. Each disk operation will transfer a block of data, instead of a byte or a word of data. Figure 2.18 shows
how read and write operations are implemented.

For the read operations, the process is as follows:

Declare a pointer f to a FILE type;
Open a file for read: Create a buffer that can hold a block of bytes (e.g., 1024 bytes);
Copy the first block of a file into the buffer;
A program uses the pointer to read the data in the buffer;
When the pointer moves down to the end of the buffer, copy the next block into the buffer;
Close the file at the end of use.

For the write operation, the process is as follows:

Declare a pointer f to a FILE type;
Open a file for write: Create a buffer that can hold a block of bytes (e.g., 1024 bytes);
A program uses the pointer to write the data in the buffer;
When the buffer is full, copy the block into the disk;
Move the pointer to the beginning for more write-operations;

top 1.5
2.5
1.5

3.5
2.5
1.5

4.5
3.5
2.5
1.5

5.5
6.5
5.5

4.5
3.5
2.5
1.5

4.5
3.5
2.5
1.5

12.0
4.5
3.5
2.5
1.5

After add()

7.5
3.5
2.5
1.5

After sub()

26.25
2.5
1.5

After mul()

10.5
1.5

After div()
12.0

After add()

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

top

top 1.5
2.5
1.5

3.5
2.5
1.5

4.5
3.5
2.5
1.5

5.5
6.5
5.5

4.5
3.5
2.5
1.5

4.5
3.5
2.5
1.5

12.0
4.5
3.5
2.5
1.5

After add()

7.5
3.5
2.5
1.5

After sub()

26.25
2.5
1.5

After mul()

10.5
1.5

After div()
12.0

After add()

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

top

90

Close the file at the end of use.

Figure 2.18. File read and write operations.

2.6.2 File operations in C

We focus on C file operations in this section, and we will discuss the C++ file operations in the next chapter.
We will use the following example to demonstrate the basic file operations, including opening, reading,
writing, and closing a file.

// demonstrate the use of fopen, fclose, feof, fgetc and fputc operations

#include <stdio.h>

#include <string.h>

// This function reads all characters in a file and puts them in a string

void file_read(char *filename, char *str) {

 FILE *p;

 int index=0;

 p=fopen(filename, "r"); // Open the file for "read".

 // Other options are "w" (write), "a" (append), and "rw" (read & write).

 while(!feof(p))// while not reaching the end-of-file character

 *(str+index++)=fgetc(p); //read a character from file and put it

 // in str. p is incremented automatically.

 str[index]='\0'; // add the null terminator

 puts(str); // print str. You can use printf too.

 fclose(p); // close the file

}

// This function creates a new file (or opens an existing file), and then

// stores (puts) all characters in the string str into the file.

void file_write(char *filename, char *str) {

 int i, l;

 FILE *p; // declare a pointer to file type

 p=fopen(filename, "w"); // open/create a file for "write".

 l = strlen(str); // get string-length

 for(i=0;i<l;i++)

B
uf

fe
r

File on disk
also called a stream

A block

memory

Copy a
block

to fill the
buffer

f: a pointer to a file

Bu
ffe

r

memory

Copy the
entire
buffer
into a
block

f

91

 fputc(*(str+i),p); // write a character to the file pointed

 // by p. p is incremented automatically.

 fclose(p); // Close the file.

}

// This function cipher-encrypts the string in variable str.

void encrypt(int offset, char *str) {

 int i,l;

 l=strlen(str);

 printf("original str = \n%s\n", str);

 for(i=0;i<l;i++)

 str[i] = str[i]+offset;

 printf("encrypted str = \n%s \nlength = %d\n", str, l);

}

void main() {

 char filename[25];

 char strtext[1024];

 printf("Please enter the name of the file to be read\n");

 // you should enter the name of an existing text file, e.g., letter1.txt

 scanf("%[^\n]s", filename); //Read a line till the end-of-line "\n"

 file_read(filename, strtext); //read text from file & put it in strtext

 encrypt(5, strtext); //manipulate the string strtext

 printf("Please enter the name of the file to be written\n");

 scanf("%[^\n]s", filename); //Read a line till the end-of-line "\n"

 file_write(filename, strtext); //write the text into the given file

}

This program first takes a file name from the keyboard, reads the file (we assume the file exists), and puts
the entire contents of the file in a string variable strtext. Then we call the encrypt function to encrypt the
string. Finally, we write the encrypted string into another text file.

In the program, we use the following basic file open operation:
 p = fopen(filename, "r");

to open the file in “read” mode. The pointer p points to the first character in the text file (buffer). Other
mode options are “w” for “write” and “a” for “append” data at the end of the file. In addition to these modes,
the following characters can be included in mode to specify the translation mode for newline characters:
“t”: Open in text (translated) mode. In this mode, CTRL+Z is interpreted as an end-of-file character on
input. “b”: Open in binary (untranslated) mode; translations involving carriage-return and linefeed
characters are suppressed. The letter “b” must be placed at the end of the mode string. If you want to open
a file for both read and write operations, you can use an “+.” Table 2.4 summarizes the mode definitions:

92

Mode Description
r Open an existing file for reading.
w Open a file for writing. If the file does not exist, a new file is created. If the file exists, its content is

cleared, and the file is written as an empty.
a Open a file for appending. If the file does not exist, a new file is created.
r+ Open an existing file for reading and writing.
w+ Same as w mode, but allow both write and read.
a+ Same as a mode, but allow append and read.
b Binary mode. The letter b can appear at the end or before +, e.g., both w+b and wb+ are acceptable.

Table 2.4. File operation modes.

Having opened a file, we can use the function
ch = fgetc(p);

to read the first character from the file. After each fgetc call, the pointer is automatically moved to the
next position, ready for reading the next character. Another function is

fputc(ch, p);

that puts the character in parameter ch into the file at the position pointed to by p.

After we have completed file operations (read or write), we must close a file by using the file close
operation

fclose(p);

If a file is not closed, the file descriptor that is used by the operating system to identify the file will not be
freed. The total number of file descriptors that an operating system can issue is usually very limited. For
example, in the Unix operating system, the file descriptor must be between 0 and 20. File descriptors 0, 1,
and 2 are reserved for three system files: standard input, standard output, and standard error output, leaving
only 18 file descriptors for all users concurrently using the operating system. If no file descriptors are
available, the operating system will not be able to open any file for any user applications.

In the statement scanf(“%[^\n]s,” filename) in the program example above, the control sequence
[^\n] ensures that the scanf reads until the newline symbol “\n,” including the spaces in the line.

The other file operations include:

fread(buffer, size, count, fileName); // unformatted read
fwrite(buffer, size, count, filename); // unformatted write
scanf(control sequence, parameter list); // formatted input from keyboard
printf(control sequence, parameter list); // formatted output to screen
fscanf(filename, control sequence, parameter list);
// This function is the same as scanf, except it inputs from a file
fprintf(filename, control sequence, parameter list);
// This function is the same as printf, except it outputs to a file

The definitions of the functions fread and fwrite are:
size_t fread(void *buffer, size_t size, size_t count, FILE *fileName);

size_t fwrite(const void *buffer, size_t size, size_t count, FILE *fileName
);

93

// Using these two functions requires including a <stdio.h> header

The functions are defined in the standard library stdio.h. The function fread returns the number of full
items actually read, which may be less than count if an error occurs or if the end of the file is encountered
before reaching count. You can use the feof or ferror function to distinguish a read error from an end-
of-file condition. If size or count is 0, fread returns 0, and the buffer contents are unchanged.

The function fwrite returns the number of full items actually written, which may be less than count if
an error occurs. Also, if an error occurs, the file-position indicator cannot be determined.

The parameters in the functions are specified as follows:
1. buffer: pointer to the source variable (for fwrite) or to the

destination variable (for fread)

2. size: item size in bytes

3. count: maximum number of items to be read or written. Normally, use 1.

4. fileName: pointer to FILE structure

The following segment of code shows the application of fread and fwrite. It consists of two functions.
The save_file function saves a linked list of nodes into a file called fileName, and the load_file
function reads the file called fileName, and rebuilds the linked list according to the saved data. The
segment of code demonstrates how to write and read strings and integers to and from a file.

// demonstrate the use of fopen, fclose fread and fwrite operations

void save_file() {

 FILE *fileName;

 personnel *node;

 char ch;

 long sid;

 fileName = fopen(file_name, "wb"); // w for write, b for binary mode

 if(fileName != NULL) {

 node = head;

 while(node != NULL) {

 fwrite(node->getName(), 30, 1, fileName);

 fwrite(node->getBirthday(), 11, 1, fileName);

 sid = node->getId();

 fwrite(&sid, sizeof(long), 1, fileName); // binary write

 node = node->getNext();

 }

 }

 else

 printf ("ERROR – Could not open file for saving data !\n");

}

void load_file() {

 FILE *fileName;

 personnel *node, *temp;

 char sname[30];

 char sbirthday[11];

94

 long sid;

 fileName = fopen(file_name, "rb"); // r for read, "b" for binary

 if(fileName != NULL) {

 while(fread(sname, 30, 1, fileName) == 1) {

 fread(sbirthday, 11, 1, fileName);

 fread(&sid, sizeof(long), 1, fileName); // read binary

 node = new personnel(sname, sbirthday);

 node->setId(sid);

 if(head != NULL)

 temp->setNext(node);

 else

 head = node;

 temp = node;

 }

 fclose(fileName);

 }

}

We have used scanf and printf to read from the keyboard and print to the screen. In fact, in C/C++, the
keyboard is considered to be a read-only file (standard input file) and the screen is considered to be a write-
only file (standard output file). Their file names are stdin and stdout, respectively.

The functions fscanf and fprintf are more general forms of file operations in which we can specify
what file we want to read and write. The standard input and output functions scanf and printf are special
cases of them and are equivalent to

fscanf(stdin, control sequence, parameter list);

fprintf(stdout, control sequence, parameter list);

The following example shows the application of fprintf and fscanf. First, an integer number and a float
number are written in the file named PersonData. Then the file is closed and reopened for read. An integer
number and a float number are read into two variables len and hei, respectively:

#include <stdio.h>

void main() {

 FILE *fileID;

 int length = 35429, len;

 float height = 5.8, hei;

 fileID = fopen("PersonData", "wb"); // open for write

 if(fileID != NULL) {

 fprintf(fileID, "%d\n", length); // write an integer into a file

 fprintf(fileID, "%f\n", height); // write a float into a file

 }

 else

 printf ("ERROR – Could not open file for saving data !\n");

 fclose(fileID);

 fileID = fopen("PersonData", "rb"); // open for read

 if(fileID != NULL) {

95

 fscanf(fileID, "%d", &len); // read an integer from a file

 fscanf(fileID, "%f", &hei); // read a float from a file

 printf("length = %d, height = %f\n", len, hei);

 }

 fclose(fileID);

}

In C++, similar input and output functions are defined:
cin >>

cout <<

cin.ignore();

cin.get(strvar, strlength, achar);

cin.getline(strvar, strlength, achar);

More details of C++ input, output, and file operations will be discussed in Chapter 3.

2.6.3 Flush operation in C

In the aforementioned programs, we used fflush(stdin) to remove the delimiter (a space, a newline,
etc.) before using getc(stdin). The reason is, the formatted input function scanf will read only up to
the delimiter and leave the delimiter in the input buffer. If we do not call fflush(stdin), the left delimiter
will be read by an unformatted input function such as getc(stdin) and gets(stdin). Thus, we must
call function fflush(stdin) to flush the buffer of the standard input file stdin. It is not a problem if
two consecutive scanf functions are called because a formatted input function can automatically remove
the delimiter. The C++ function equivalent to fflush is cin.ignore, which will be discussed in Chapter
3.

C-styled fflush(stdin) function that flushes the input buffer to remove the remaining delimiters in the
buffer of the standard input file stdin after a scanf operation. Consider the following snippet of code:

#include <stdio.h>

#pragma warning(disable: 4996) // comment out if not in Visual Studio

int main() { // Test fflush() function

 char strvar[8], ch;

 scanf("%s", strvar); // Enter: Hi

 printf("%s\n", strvar);

 //fflush(stdin); // Try the program with and without fflush()

 ch = getc(stdin); // enter a character ‘x’

 printf("%c\n", ch);

 printf("%s\n", strvar);

}

The inputs and outputs of the program with the fflush() (commented out) and without the fflush,
respectively, are shown as follows:

96

With fflush: Without fflush:

Figure 2.19 explains the reason why the character read getc(stdin) does not read the character into the
variable ch, by illustrating the states of the input variable strvar and the input buffer in the execution
process of the program above. Notice that the newline character ‘\n’ is left in the buffer after the scanf
operation is completed, and thus the next input character is appended to the character. The getc function
reads a character from the input buffer, which will read ‘\n’, without giving a chance to read the keyboard.
As a result, no input is needed, ‘\n’ is read into the input variable ch, and thus the keyboard operation is
skipped.

Figure 2.19. The input buffer between the keyboard and the input variable.

If the library function fflush does not exist in your environment, you can also write your own flush
function to flush all the characters in the file buffer. The following snippet of code shows a simple
implementation:

void myFlush(){ // Manually flush all characters in the stdin buffer

 int c;

 do {

 c = getchar();

 } while (c != '\n' && c != EOF); // EOF: End of File flag

};

When you switch back from unformatted input to formatted input, you normally do not need to put the
delimiter back. However, it is a good idea to restore the character that is flushed. You can call the library
function ungetc('\n', stdin) to put the newline character back into the buffer.

… Keyboard

Input buffer (an array of bytes)Variable: strvar scanf

Initial state:

Calling scanf(strvar) H i \n … Keyboard

After scanf(strvar) H i \0 \n … Keyboard

\n … KeyboardCalling ch = getc()

After ch = getc() \n … Keyboard

Without fflush()

97

2.7 Functions and parameter passing
Functions, also called procedures or subroutines in some other programming languages, are named blocks
of code that must be explicitly called. The purpose of functions is twofold:

Abstraction: Statements in a function form a conceptual unit.
Reuse: Statements in a function can be executed multiple times in the program.

As a part of a program, a function must communicate with the rest of the program. To pass values into a
function (in-passing), we usually have two methods: global variable and parameter passing. To pass values
out of a function (out-passing), we usually have three methods: global variable, parameter passing, and
return value. Different programming languages have different value passing policies and mechanisms.

In imperative and object-oriented programming languages like C/C++ and Java, all combinations
of the in-passing and out-passing methods are allowed.
In functional programming languages like Scheme or Lisp, parameter passing is the only in-passing
method and return value is the only out-passing method allowed.
In logic programming languages like Prolog, parameter passing is the only in-passing and the only
out-passing method allowed.

Using a global variable to pass a value in or out of a function causes unwanted side effects and thus it is
generally not recommended to use global variables for passing values. It is conceptually simple to use a
return value to pass a value out of a function. We will thus focus on the parameter-passing mechanisms that
pass values in and out of functions.

When we discuss parameter passing, we need to differentiate two kinds of parameters: formal parameters
and actual parameters. Formal parameters are the parameters we use when we declare (define) a function.
Formal parameters are local variables of the function. Actual parameters are the values or variables we
use to substitute for the formal parameters when we call a function. Actual parameters are variables/values
of the caller before the control enters the function. They become the variables/values of the function after
the control enters the function.

Now the question is what would happen if we modify the formal parameters in the function. Will the
modification have an impact on the actual parameters? The answer to the question depends on what kind
of parameter-passing mechanisms we use. The most frequently used parameter-passing mechanisms are
call-by-value, call-by-alias, and call-by-address.

Call-by-value: The formal parameter is a local variable in the function. It is initialized to the value of the
actual parameter. It is a copy of the actual parameter. The modification of formal parameters has no impact
on the actual parameters. In other words, call-by-value can only pass values into a function, but it cannot
pass values outside the function. Functions using call-by-value must use return-value to pass a value to the
outside. The advantage of call-by-value is that it has no side effects and it is considered a reliable
programming practice. The drawback is that it is not convenient to handle structured data types.

The following piece of code demonstrates value in-passing by global variable and call-by-value
mechanisms:

#include <stdio.h>

int i = 1; // i is a global variable outside any function

foo(int m, int n) { // m and n are formal parameters

 printf("i = %d m = %d n = %d\n", i, m, n);

 i = 5; m = 3; n = 4; // Modify i, m and n.

98

 printf("i = %d m = %d n = %d\n", i, m, n);

}

main() {

 int j = 2; // j is a local variable, local to main() function

 foo(i, j); // i and j are actual parameters of function foo

 printf("i = %d j = %d\n", i, j);

}

The output of the program is
i = 1 m = 1 n = 2

i = 5 m = 3 n = 4

i = 5 j = 2

As you can see, the global variable i is changed in the function and i remains changed after leaving the
function. On the other hand, j is passed to formal parameter n and n is modified in the function. The
modification to n has no impact on j.

Call-by-alias: It is also called call-by-reference or call-by-variable. The formal parameter is an alias name
of the actual parameter. Call-by-alias can pass a value into and out of a function. However, it has a side
effect, that is, a variable outside a function can be changed by an action in a function.

For call-by-alias, there is only one variable (memory location) with two names for the formal and actual
parameters, respectively. Changing the formal parameter immediately changes the actual parameter. The
actual parameter must be a variable. It cannot be a literal value because a value cannot have an alias. This
mechanism is supported by C++, but not by C.

To declare a formal parameter x in call-by-alias, an ampersand symbol is prefixed to the parameter: &x.
The following code demonstrates parameter passing by the call-by-alias mechanism, where the second
parameter of the foo function is an alias to the corresponding actual parameter:

#include <iostream>

void foo(int, int &); // forward declaration

int i = 1;

void main() {

 int j = 2; // j is a local variable, local to main() function

 foo(i, j); // i and j are actual parameters of function foo

 printf("i = %d j = %d\n", i, j);

 foo(j, i); // i and j are swapped

 printf("i = %d j = %d\n", i, j);

}

void foo(int m, int &n) { // call-by-alias is applied to parameter n

 printf("i = %d m = %d n = %d\n", i, m, n);

 i = 5; m = 3; n = 4; // Modify i, m and n.

 printf("i = %d m = %d n = %d\n", i, m, n);

}

The output of the program is
i = 1 m = 1 n = 2

99

i = 5 m = 3 n = 4

i = 5 j = 4 // notice that j is changed

i = 5 m = 4 n = 5

i = 4 m = 3 n = 4 // notice that i is changed immediately

i = 4 j = 4

This program is basically the same as the call-by-value example, except that the modification to the variable
n in the foo function is passed to the variable j in the main program, in the first call, and is immediately
passed to i in the second call to foo.

Call-by-address: It is also called call-by-pointer. The address of the actual parameter is passed into a local
variable of the function. The actual parameter can be an address value or a pointer variable. You can use
the address to modify directly the actual parameter pointed to by the address. You can also modify the
address value stored in the formal parameter. However, this modification will not modify the actual
parameter. In fact, for the pointer variable itself, call-by-value is applied. In the following example, we
demonstrate parameter passing by call-by-address.

#include <stdio.h>

void foo(int *n) { // declare call-by-address parameter

 printf("n = %d\n", *n); // print the variable value pointed to by n

 *n = 30; // modify the variable value pointed to by n

 printf("n = %d\n", *n); // print the variable value pointed to by n
again

 n = 0; // Modify the pointer itself.

}

void main() {

 int i = 15;

 foo(&i);

 printf("i = %d\n", i);

 i = 10;

 foo(&i);

 printf("i = %d\n", i);

}

The output of the program is
n = 15

n = 30

i = 30

n = 10

n = 30

i = 30

In the main program, we have a local variable i, initialized to 15. We then call function foo using &i, the
address of variable i. The actual parameter is the address value (a pointer) to i, not the variable i itself. In
the function definition body, the formal parameter is a pointer to an integer type. We use the pointer n to
modify the variable *n pointed to by n, which is in fact i. Thus, we have indirectly modified variable i in
the main() function. When the control exits the function, i remains modified. As the last statement in the
function, we modify n itself. However, this modification will not have an impact on the address value

100

passed to n when the control exits the function. As you can see here, call-by-address and call-by-value are
relative. We use call-by-address if our intention is to pass the variable pointed to by the pointer (address
value) to the function. If we change the variable through its address, the variable remains changed after
exiting the function. On the other hand, if the address value is what we really want to pass into the function,
instead of the variable pointed to by the address, we are actually doing call-by-value.

Another application of call-by-address is in the situation where we want to pass a structure variable (an
array, a string, or a structure) to a function. It is more convenient to pass the pointer of the structure variable,
instead of passing the structure itself.

In Java, parameter passing is limited in such a way that:

If the parameter is of a primitive type, only call-by-value is allowed;
If the parameter is of a class-based type, only call-by-address is allowed.

Some books say that Java only supports call-by-value. They are referring to the pointer variable (reference)
itself passed to a function. However, since the intention of passing the reference variable is to access the
object pointed to by the reference, it is better to say that it supports call-by-address, instead of call-by-value.
Notice that the pointer in Java is called “reference.” However, Java’s parameter passing for objects is not
call-by-alias or call-by-reference, according to the definition of call-by-reference here.

In C/C++, all combinations of parameter passing are allowed. You can pass a pointer (call-by-address) or
an alias (call-by-alias) to a simple variable (e.g., of integer type), or pass a complex type of variable using
call-by-value, call-by-alias, or call-by-address.

The following program shows how to pass a string into and out of a function using call-by-address:
// file name: strop.c

#include <stdio.h>

#include <string.h>

char *getString(char *str){ //The function returns a pointer to its
parameter.

 return str; // returns a pointer.

}

void setString(char *str1, char *str2) { // Copy str2 into str1

 strcpy(str1, str2);

}

void main() {

 char *p, q[8] = "morning", *s = "hello";

 printf("s = %s\n", s);

 p = getString(s);

 printf("p = %s\n", p);

 setString(q, p); // q is the address of the array-based string

 printf("q = %s\n", q);

}

The output of the program is
s = hello

p = hello

q = hello

101

2.8 Recursive structures and applications
Section 2 discussed basic control structures in C/C++. This section studies the complex recursive structures.
We first compare recursive structures with the iterative structures. Then we formulate the generic steps of
writing recursive functions. Finally, we use a longer example as a case study to go through the design steps.
More examples of recursion will be studied in Chapters 4 and 5.

2.8.1 Loop structures versus recursive structures

A function (or procedure) is said to be recursive if the function calls itself. A recursive function can call
itself anywhere, except the first statement, and once or multiple times, in the body of the function. If a
recursive function calls itself only once and in the last statement, the function is said to be tail-recursive.
Tail-recursion has the simplest structure.

Figure 2.20 compares three different repetition structures: (a) while-do-loop, (b) nontail-recursion, and (c)
tail-recursion.

Figure 2.20. Three different repetition structures.

Although other loop structures do exist, like for-loop and do-while-loop, while-do-loop is sufficient to
implement other possible loop structures. The nontail-recursion breaks its loop-body down into two parts,
separated by the recursive call. Part 1 is first repeatedly executed n times, and then part 2 is executed n
times. It is important to recognize that part 2 is executed the same number of times as part 1. The partially
completed computations are stored on the stack. When part 1 is eventually repeated, the sufficient number
of times or the stopping condition is satisfied, the control exit part 1 and enters part 2. Then part 2 will be
executed the same number of times, and finally exit at the end of part 2.

In the case of tail-recursion, the recursive call is the last statement, and thus, there is no part 2. As we can
see, the general recursive structure is very different from the iterative loop structure. However, the tail-
recursive structure has exactly the same control structure as the while-do-loop. In other words, the while-
do-loop structure is a special case of the recursive structure. We will see in Chapter 4 that functional
program languages can use recursion as their only repetition structure, completely removing loop structures
from the languages.

(a) (c)(b)

loop-body

12n

condition

Jump to

part 1

12n

recursive call

condition

12n

part 1

12n

recursive call

condition

part 2

n times

(a) (c)(b)

loop-body

12n

condition

Jump to

part 1

12n

recursive call

condition

12n

part 1

12n

recursive call

condition

part 2

n times

loop-body

12n

condition

Jump to

part 1

12n

recursive call

condition

12n

part 1

12n

recursive call

condition

part 2

n times

102

Here we are taking a glass-box approach to understand the recursive function; that is, we try to study
recursion by trying to understand the structure and the control flow of the function. This is one of the most
common approaches taken by many programmers. It works fine for simple recursive functions. However,
if a recursive function has multiple recursive calls in its body, the structure will be far too complex to
understand. We will take an innovative approach in this book to study the recursive function: the black-box
approach, or so-called abstract approach. This approach works fine for both simple and complex recursive
functions. We will see soon that this approach is far easier to understand and to apply to solve all kinds of
recursive problems in all possible programming languages.

2.8.2 The fantastic-four abstract approach of writing recursive functions

The idea of recursion may not be as straightforward as iterative looping. However, writing recursive
functions can be as simple as writing iterative functions, as long as you strictly follow the fantastic-four
abstract approach. The approach was first proposed by one of the authors in the first edition of this book
and was called “simple steps for writing recursive procedures.” The approach has been rated by all students
who learn it to be the most efficient method of teaching and learning recursion and was called by the
students “fantastic-four.” In the second edition, it is formally named the fantastic-four abstract approach,
which consists of the following steps:

1. Formulate the size-n problem: Recursion is necessary only if you want to solve a problem that
needs to repeat the same operations for a number of times. We assume the number of repetition is n. In
most cases, n is obvious. For example, if we want to compute factorial n!, the size n is already given.
Formulating a size-n problem is merely choosing a function name, using n as the parameter, and defining
the return type (not the return value) of the function. It is similar to writing the forward declaration of a
function in C. Thus, the size-n problem for a factorial problem is

 int factorial(int n);

The return value of the size-n problem is what the function is supposed to compute, or the value
we are looking for. In this step, we do not need to design the solution for the size-n problem.

2. Find the stopping condition and the corresponding return value: The body of a recursive
function should begin with checking the stopping condition. If the stopping condition is true, the function
returns the corresponding value and exits. Otherwise, it calls the function itself. In most cases, identifying
the stopping condition and corresponding value is trivial or given. For example, the stopping condition of
factorial(n) is n = 0, and the corresponding value is 1.

3. Select m and formulate the size-m problem: After we have formulated the size-n problem, the
size-m problem is easy: We simply replace parameter n by m in the size-n problem, where m < n. Size m
is determined by how much we can reduce the size of the problem in one iteration. If we can only reduce
the problem size by 1, m is n−1, and thus our task in this step is formulating a size-(n−1)problem. For
example, the size-(n−1) factorial problem is simply factorial(n−1). Sometimes, we may need to find
an m that is not n−1. It is application-specific to find a proper m. We will use several examples to illustrate
this point in this section and study many more examples in Chapter 4. Most students who have difficulty
comprehending recursion misunderstand this step: They try to define a solution, or the return value, of size-
m problem here in this step! It is not possible and it is not necessary to produce the return value in this step.
All we need to do about the return value here is exactly the same as what we did in step 1. We simply
assume the size-m problem will return a value and use this value in step 4. For example, the return value of
size-(n−1) factorial problem is factorial(n−1).

4. Construct the solution of the size-n problem: In this step, we will use the assumed solution or
return value for size-m or size-(n−1) problem to construct the solution of the size-n problem. Again, this is

103

application-specific. In the case of the factorial problem, the solution of the size-n problem is
n*factorial(n−1).

Sometimes, we may need to use the return values of multiple size-m problems, where 0 m < n (assume
size-0 is the stopping condition), to construct the solution of the size-n problem.

Strictly following these steps, we can define the complete factorial function as follows:
int factorial(int n) { // size-n problem

 if (n == 0) // Stopping condition

 return 1; // Return value at the stopping condition

 else

 return n * factorial(n - 1); //use size-(n-1) problem’s assumed

 // solution to construct size-n problem’s solution

}

2.8.3 Hanoi Towers

The Hanoi Towers game is a good example used for explaining recursion. As shown in Figure 2.21, the
rules of playing the game are:

There are three pegs, and n successively smaller disks are initially placed on the left peg. In the
example in Figure 2.21, n = 4. The objective is to move all disks to the right peg. The center peg
can be used as an auxiliary holding (spare) peg.
Disks may be moved from one peg to another. Only one disk may be moved at a time.
The only disks that may be moved are the top disks on one of the three pegs.
At no time may a larger disk may be placed on a smaller disk.

Now we follow the fantastic-four abstract approach to define a solution for the Hanoi Towers problem.

1. Formulate the size-n problem

We can simply formulate the size-n problem as void hanoi(int n). However, in the return value
(solution), we need to print how to move one disk from one peg to another in each step, and we need to
name these three pegs. We could hard code the names as p1, p2, and p3; or left, center, and right. To increase
the flexibility of the code, we add three parameters to the function, so that the user can pass different names
into the function. Thus, we formulate the problem as

void hanoitowers(int n, char *left char *center char *right);

Notice that the function does not return a value; instead, it prints instructions (steps) for how to move n disk
from the left peg, using the center peg as the auxiliary, to the right peg.

104

Figure 2.21. Solving Hanoi Towers problem.

2. Find the stopping condition and the corresponding return value

The stopping condition is n = 1. In this case, the size-1 problem is hanoitowers(1, left, center,
right), and the solution is to print “move the disk from the left peg to the right peg.”

3. Select m and formulate the size-m problem

Since we can move only one disk at a time, it is obvious that we can only reduce the size by one in one
iteration. Furthermore, since we have multiple parameters in the function, we could have multiple size-
(n−1) problems. The following are six possible size-(n−1) problems:

(1) move n-1 disks from left to right, using center as auxiliary:
hanoitowers(n-1, left, center, right)

(2) move n-1 disks from left to center, using right as auxiliary:
hanoitowers(n-1, left, right, center)

(3) move n-1 disks from center to left, using right as auxiliary:
hanoitowers(n-1, center, right, left)

(4) move n-1 disks from center to right, using left as auxiliary:
hanoitowers(n-1, center, left, right)

(5) move n-1 disks from right to left, using center as auxiliary:
hanoitowers(n-1, right, center, left)

(6) move n-1 disks from right to center, using left as auxiliary:
hanoitowers(n-1, right, left, center)

4. Construct the solution to the size-n problem

Use the solutions for size-(n−1) problems to construct the solution for the size-n problem.

Step 1:
Move n-1 disks
to the center peg

Step 2:
Move 1 disk
to the right peg

Step 3:
Move n-1 disks
to the right peg

Initial state:
n disks on left peg

Step 1:
Move n-1 disks
to the center peg

Step 2:
Move 1 disk
to the right peg

Step 3:
Move n-1 disks
to the right peg

Initial state:
n disks on left peg

105

Figure 2.21 and the text on the left-hand side showed how we construct the solution for the size-n problem
based on the solutions for size-(n−1) and size-1 problems, that is,

hanoitowers(n-1, left, right, center) // move n-1 disks left -> center

hanoitowers(1, left, center, right) // move 1 disk left -> right

hanoitowers(n-1, center, left, right) // move n-1 disks left -> center

In words, the solution for the size-n problem is: (1) Move n-1 disks from left peg to the center peg.
We simply assume that we can do it, because it is a size-(n−1) problem. (2) Move the remaining disk from
left to right. (3) Move n-1 disks from center to the right.

Once we have designed the solution, we can easily obtain the C program that solves the Hanoi Towers
problem as follows:

#include <stdio.h>

void hanoitowers(int n, char *S, char *M, char *D) {

 if (n == 1) { // stopping condition

 printf("move top from %s to %s\n", S, D);

 // output at stopping condition

 } else { // from size-(n-1) to size-n problem

 hanoitowers(n-1, S, D, M);

 hanoitowers(1, S, M, D);

 hanoitowers(n-1, M, S, D);

 }

}

void hanoi(int n) { // define a simpler human-interface

 hanoitowers(n, "Left", "Center", "Right");

}

void main() {

 hanoitowers(3, "Source", "Spare", "Destination");

 printf("------------------------------------\n");

 hanoi(4);

}

In the program, we defined a one-parameter function hanoi(n) as a simpler user interface, in case the user
wants the hard-coded peg names. The function with more parameters is defined as a recursive function.
When the main() function is executed, the functions hanoitowers(3, "Source",
"Spare","Destination") and hanoi(4) will be called, resulting in the following output describing
how to solve the size-3 and size-4 Hanoi Towers problems:

move top from Source to Destination

move top from Source to Spare

move top from Destination to Spare

move top from Source to Destination

move top from Spare to Source

move top from Spare to Destination

move top from Source to Destination

move top from Left to Center

106

move top from Left to Right

move top from Center to Right

move top from Left to Center

move top from Right to Left

move top from Right to Center

move top from Left to Center

move top from Left to Right

move top from Center to Right

move top from Center to Left

move top from Right to Left

move top from Center to Right

move top from Left to Center

move top from Left to Right

move top from Center to Right

As you can see from the example, the most important idea of recursive functions is that we simply assume
that we have the solution for the size-(n−1) problem and we do not need to solve it. Why does it work?
Because the recursive mechanism will actually solve the problem from size-1 upward automatically; that
is, it will solve the size-1 problem, then it will use the solution to the size-1 problem to construct the solution
to the size-2 problem, and so on. Since we have given the solution to the size-1 problem and we have
defined how to find the solution to the size-n problem based on the solution to the size-(n−1), we basically
have given solutions to the problem of all sizes of problems!

2.8.4 Insertion sorting

Now we will follow the fantastic-four abstract approach to solve the sorting problem in a simple way
(insertion sorting) to demonstrate recursion. Assume that we have an array containing n integers: A[n].
The task is to sort the n numbers in ascending order.

1. Formulate the size-n problem.

We can simply formulate the size-n problem as
int* sorting(int *A, int n);

where A is the initial address of the array to be sorted and n is the size of the array. The function will return
the initial address of the sorted array.

2. Find the stopping condition and the corresponding return value.

The stopping condition is n = 1. In this case, the size-1 problem is sorting(int *A, 1), and the
solution or return value is the address of A. A is not changed because A has only one element and is already
sorted.

3. Select m and formulate the size-m problem.

Here we take a simple approach by reducing the size of the problem by 1. Thus, m = n – 1 and the size-
(n−1) problem is

sorting(B, n-1);

where B is the address of an array of size-(n−1). We assume B will be sorted if we call this function. This
is very important!

107

4. Construct the solution of the size-n problem.

Since step 3 can solve the size-(n−1) problem, it is easy to solve the size-n problem:

(1) We split array A into two parts: The subarray of the first n−1 elements is B and the remaining
element is x.

(2) We call the function in step 3 to sort the size-(n−1) array B.
(3) We find the right position p for inserting x into B.
(4) We make space for x by shifting the elements after position p one place right.
(5) We insert x at the position p.

Figure 2.22 graphically illustrates the four steps of implementing the recursive sorting algorithm.

Figure 2.22. The fantastic-four steps sorting an array recursively.

The following program implements the four steps in the abstract approach. The comments in the program
associate the statements with the four steps described above.

#include <stdio.h>

int* sorting(int *A, int n) {

 int *B, i, j, p = n-1, x;

 if (n==1) return A; // stopping condition and return value

 else {

 x = A[n-1]; // Store the last element in x

 B = sorting(A, n-1); // size-(n-1) problem

 i = 0;

 while (i < n-1) { // Start to construct size-n solution

 if (x < B[i]) {

 p = i; // locate the position p for x

 i = n; // exit the loop

 }

1. Formulate the size-n problem.
int* sorting(int *A, int n);

. . .

2. Find the stopping condition and
the corresponding return
value.

n- 1 1

. . .

. . .

x

assume
3. Select m, formulate the size-m

problem, assuming
it is sorted.

x

<= x > x

. . .4. Construct the solution of size-n
problem.

108

 else i++;

 } // x should be inserted at position p

 for (j = p; j < n-1; j++) // make space

 B[n-1-(j-p)] = B[n-1-(j-p)-1];

 B[p] = x; // put x in the right place

 return B;

 } // end of else branch

}

void main() {

 int *SA, i, k, A[] = {3, 2, 4, 2, 9, 7, 1, 6}; // sample array

 k = (int)sizeof(A)/sizeof(int); // get the length of the array

 SA = sorting(A, k);

 for (i = 0; i < k; i++)

 printf("%d, ", SA[i]);

}

Figure 2.23 illustrates the execution process and the changes of the array. In part 1 of the recursive function
(before the recursive call), the array size is reduced by 1 every time the recursive function is called, till n =
0. Since the array index starts from 0, the array has one element when n = 0, as shown on the left-hand side
of the figure. On the right-hand side, corresponding to part 2 (after the recursive call), the last element is
inserted into the right position to form the size-n problem’s solution at each level of recursion.

Figure 2.23. Three different repetition structures.

2.8.5 Merge sort algorithm

For some problems, it is possible to reduce the size by more than 1, resulting in a more efficient solution.
For example, in step 3 of the above sorting example, we could select m = n/2 (floor of n/2). In other
words, we divide the size-n problem into two approximately equal-sized problems by dividing the array A
into two half-sized arrays B1 and B2. Then we call

sorting(B1, n/2); // floor of n/2

sorting(B2, n/2); // ceiling of n/2

respectively and have both B1 and B2 sorted. Then we merge B1 and B2 into an array B by comparing the
elements of the two subarrays sequentially. This sorting algorithm is called merge sort, which is one of the

3, 2, 4, 2, 9, 7, 1 | 6

3, 2, 4, 2, 9, 7 | 1

3, 2, 4, 2, 9 | 7
3, 2, 4, 2 | 9

3, 2 | 4 | 2

3 | 2 | 4

3, 2, 4, 2, 9, 7, 1, 6

3 | 2
3

Last element is separated:
Initial array

Last element is separated:

Last element is separated:
Last element is separated:

Last element is separated:

Last element is separated:
Last element is separated:
n = 0

3 | 2 2, 3
2, 3 | 4 2, 3, 4
2, 3, 4 | 2 2, 2, 3, 4
2, 2, 3, 4 | 9 2, 2, 3, 4, 9

2, 2, 3, 4, 9 | 7 2, 2, 3, 4, 7, 9

2, 2, 3, 4, 7, 9 | 1 1, 2, 2, 3, 4, 7, 9

1, 2, 2, 3, 4, 7, 9 | 6 1, 2, 2, 3, 4, 6, 7, 9

construct size-n solution

3, 2, 4, 2, 9, 7, 1 | 6

3, 2, 4, 2, 9, 7 | 1

3, 2, 4, 2, 9 | 7
3, 2, 4, 2 | 9

3, 2 | 4 | 2

3 | 2 | 4

3, 2, 4, 2, 9, 7, 1, 6

3 | 2
3

Last element is separated:
Initial array

Last element is separated:

Last element is separated:
Last element is separated:

Last element is separated:

Last element is separated:
Last element is separated:
n = 0

3 | 2 2, 3
2, 3 | 4 2, 3, 4
2, 3, 4 | 2 2, 2, 3, 4
2, 2, 3, 4 | 9 2, 2, 3, 4, 9

2, 2, 3, 4, 9 | 7 2, 2, 3, 4, 7, 9

2, 2, 3, 4, 7, 9 | 1 1, 2, 2, 3, 4, 7, 9

1, 2, 2, 3, 4, 7, 9 | 6 1, 2, 2, 3, 4, 6, 7, 9

construct size-n solution

109

most efficient sorting algorithms with a complexity of O(nlogn). The pseudo code in Figure 2.24 shows the
sorting process through an example, illustrating how each subarray is split, sorted, and merged.

Figure 2.24. Merge sort and its sorting process.

The pseudo code below shows the recursive algorithm that implements merge sort. In the algorithm, the
floor(x) function rounds x downward, returning the largest integer value that is not greater than x.

mergesort (A, L,R) {

 if R > L then

 { M = floor((R+L)/2); // rounds down (R+L)/2 to integer

 mergesort (A, L, M);

 mergesort (A, M+1,R);

 merge(A, L, M, R); }

 else

 return A;

}

merge (A, L, M, R) {

 for i = M down to L do B[i] = A[i];

 for j = M+1 to R do B[R+M+1-j] = A[j];

 i = L;

 j = R;

 for k=L to R do {

 if B[i] < B[j] then

 { A[k]=B[i]; i = i+1; }

 else

 { A[k]=B[j]; j = j-1; }

 }

}

Please study the pseudo code above and identify the code for defining:

1. size-n problem
2. stopping condition and return value
3. size-m problems
4. the size-n solution from the size-m solutions

B1

1 2 2 3 4 5 6 6B

5 2 4 6 1 3 2 6A

B2

5 2 4 6B1 1 3 2 6 B2
split

sort

merge
2 4 5 6 1 2 3 6

5 2 4 6 1 3 2 6
5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6
5 2 4 6 1 3 2 6
2 5 4 6 1 3 2 6

2 4 5 6 1 2 3 6
1 2 2 3 4 5 6 6

B1

1 2 2 3 4 5 6 6B

5 2 4 6 1 3 2 6A

B2

5 2 4 6B1 1 3 2 6 B2
split

sort

merge
2 4 5 6 1 2 3 6

5 2 4 6 1 3 2 6
5 2 4 6 1 3 2 6

5 2 4 6 1 3 2 6
5 2 4 6 1 3 2 6
2 5 4 6 1 3 2 6

2 4 5 6 1 2 3 6
1 2 2 3 4 5 6 6

L RM

RM+1L M

110

2.8.6 Quick sort algorithm

Merge sort has the best complexity O(nlogn) in all the comparison-based sorting algorithms. The big O
notation is defined based on the worst case execution time. However, merge sort is not the fast algorithm
in terms of the average execution time, which is calculated based on the mean value of all possible input
combinations of the input array. Quick sort, on the other hand, the complexity O(n2). However, the average
execution time beats merge sort.

The idea of quick sort is to pick a value (any value) in the array as the pivot value to divide the array into
two subarrays, one with all its elements less than the pivot value, and the other with all its value greater
than or equal to the pivot value. The pseudo code below shows the recursive algorithm that implements
quick sort. In Chapter 5, we will give a full implementation of quick sort in Prolog.

void Quicksort (A, L, R) {

 if R = L then return; else {

 k = split(A, L, R);

 Quicksort (A, L, k-1);

 Quicksort (A, k+1, R);

 }

}

int split(A, L, R) {

 int pivot = A[R]; i = L; j = R;

 while i < j do {

 while (A[i] < pivot) do i = i+1;

 while ((j > i) && (A[j] >= pivot)) do j = j – 1;

 if (i < j) then

 swap(A[i], A[j]); // swap the values

 }

 swap(A[i], A[R]);

 return i;

}

2.8.7 Tree operations

Graphs and trees are widely used data structures. A graph is a mathematical model and a data structure that
is widely for representing related objects. A graph consists of a set of nodes and a set of edges between the
nodes. A graph is a directed graph if a direction is defined for each edge, and a graph is an undirected
graph if there is no direction defined for any edge. Assuming that the direction of the edge is the driving
direction of streets, a directed graph allows the flow following the edge directions. An undirected graph
allows the flow in both directions of the edge. A path from Node N1 to Node N2 is a sequence of edges
connecting N1 to N2, for example, (N1, X1), (X1, X2), (X2, X3), …, (Xk, N2).

A directed graph is a tree, if it does not contain a loop and there is no more than one path between any two
nodes. A tree is a rooted tree if it has a unique node that does not have an incoming edge. This node is the
root of the tree. A node that does not have outgoing edges is a leaf. The height or depths of a tree is the
number edges from the root to the deepest (farthest) leaf.

A tree is a binary tree, if any of its nodes can have at most two child (next) nodes. In a full binary tree, each
node has either no child or two children. A balanced binary tree is a tree in which the heights (depths) of

111

the two subtrees of every node never differ by more than 1. Its height is O(log2n). Figure 2.25 shows a
rooted tree, a binary tree, a full binary tree, and a balanced binary tree.

A binary search tree stores data in such a way that it keeps keys (used for indexing data) in sorted order, so
that data search will be much faster.

Figure 2.25. Binary trees.

When inserting data into a binary search tree, the simplest algorithm is

1) If the tree is empty, insert the first number as the root;
2) If the tree is not empty:

a. If the incoming number is small than the key of the current node, insert the number to the
left subtree using recursion;

b. If the incoming number is greater than or equal to the key of the current node, insert the
number to the right subtree using recursion.

Using this simple insertion algorithm, the binary search will not be balanced. In the worst-case scenario,
when the input numbers are sorted, the tree becomes a linked list. Figure 2.26 shows a not balanced binary
search tree and a balanced binary search tree.

Figure 2.26. A binary search tree and a balanced binary search tree.

To maintain the binary search tree balanced when inserting, a much more complex algorithm must be
applied. Red-black tree is a data structure that attempts to have the tree balanced during insertion, with a
topic of algorithm class.

(b) Binary tree (d) Balanced binary tree(c) Full binary tree(a) Rooted tree

(a) A binary search tree

root
10

132

17

158

145

7

12

11

root
10

132

17

1510

145 7

1211

(b) A balanced binary search tree

112

As data are searched much often than data are inserted, it is critical to make search faster than insertion.
The complexity of search algorithms on different data structures is listed as follows:

The complexity is O(n) for linear search of data stored in arrays or linked lists.
The complexity is O(n) for binary search is O(log2n), if the binary tree is balanced.
The complexity is O(n) for binary search is O(log2n), if the binary tree is binary.

The following code shows a simple implementation of search and insertion of binary search tree, where the
common functions main and branching are similar to those discussed in the linked list section.

#include <stdio.h>

#include <string.h>

#include <stdlib.h> // used by malloc

#include <time.h>

struct treeNode {

 int data;

 struct treeNode *left, *right; // pointers to left and right

} *root = 0; //root is a global pointer to the root entry

void branching(char); // function forward declaration

void insertion();

struct treeNode *search(struct treeNode *, int);

void traverse(struct treeNode *);

main() { // print a menu for selection

 char ch = 'i';

 srand((unsigned)time(0)); // Use current time as seed

 while (ch != 'q') {

 printf("Enter your selection\n");

 printf(" i: insert a new entry\n");

 printf(" s: search an entry\n");

 printf(" t: traverse the tree and print\n");

 printf(" q: quit \n");

 fflush(stdin); // flush the input buffer

 ch = tolower(getchar());

 branching(ch);

 }

}

void branching(char c) { // branch to different tasks

 int key;

 switch(c) {

 case 'i':

 insertion(); // Not passing root, but use it as global

 break;

 case 's':

 printf("Enter the key to search\n");

 scanf("%d", &key);

 search(root, key); // root call-by-value

113

 break;

 case 't':

 traverse(root); // print all data

 break;

 default:

 printf("Invalid input\n");

 }

}
struct treeNode * search(struct treeNode *top, int key) {

 struct treeNode *p = top;

 if (key == p->data)

 printf("data = %d\n", p->data);

 if (key <= p->data) {

 if (p->left == 0) return p;
 else search(p->left, key);

 }

 else {

 if (p->right == 0) return p;
 else search(p->right, key);

 }

}

Deletion is more complex than insertion and search. Three cases need to be considered, as shown in Figure
2.27, where the shaded node is the node to be deleted.

Figure 2.27. Three cases in deletion of a node.

Case 1: If the node to be deleted is a leaf, the node can be simply deleted.

Case 2: If the node to be deleted has only one child node, we can link the parent node to the child node.

Case 3: If the node X to be deleted has two child nodes, we can use a search function to find Y, the successor
of X, which is the large node that is smaller than X. We use Y to replace X. Then, the problem becomes
deleting Y from the tree. We repeat the same process with three possible cases for deleting Y. In the example
in Figure 2.27, Y falls into case 2, and we can use node 14 to 13.

10

122

17

168

145

7

13

15

10

122

17

168

145

7

13

15

10

122

17

168

145

7

13

15

(a) Case 1 (b) Case 2 (c) Case 3

X

Y

114

2.8.8 Gray code generation

The Gray code, named after Frank Gray, also known as reflected binary code, is a binary coding system
where two successive values differ in only one digit. The Gray code was originally designed for preventing
spurious output from electromechanical switches. Today, the Gray code is widely used in facilitating error
correction in digital communications such as digital terrestrial television and some cable TV systems.

The main feature of the Gray code is that an n-bit Gray code can be constructed from (n-1)-bit code in the
process shown in Figure 2.28.

Following the fantastic-four abstract approach, we can formulate the problem and its solution in the
following four steps:

1. Formulate the size-n problem.
char *gcode(int n); // will return the array of n-bit gcode

2. Find the stopping condition and the corresponding return value.
If n = 1, return array {‘0’, ‘1’};

3. Formulate the size-(n-1) problem, assuming the gcode is found for the size-(n-1) problems.
gcode(n-1) will return the (n-1)-bit gcode

4. Construct the solution of size-n problem.
part1 = gcode(n-1);
part2 = reverse(part1)
left-append ‘0’ to each item in part1
left-append ‘1’ to each item in part2
return: part1 and part2

Figure 2.28. Generating n-bit Gray code from (n-1)-bit Gray code.

The complete Gray code generation function and a sample main program are given as follows:

n = 1
0
1

n = 2
0 0
0 1
1 1
1 0

n = 3
0 00
0 01
0 11
0 10
1 10
1 11
1 01
1 00

n= 4

0 000
0 001
0 011
0 010
0 110
0 111
0 101
0 100

1 100
1 101
1 111
1 110
1 010
1 011
1 001
1 000

Steps to construct n-bit Gray code
1. For n = 1, the Gray code is simply {0, 1};
2. Assume we have obtained the (n-1)-bit code;
3. Duplicate the (n-1)-bit code to obtain two copies;
4. Append a ‘0’ to the left of the first copy of (n-1)-

bit code;
5. Reverse the order of the second copy of the n-1-bit

code to obtain the reflection;
6. Append a ‘1’ to the left of reversed (n-1)-bit code;
7. Append the two copies of the (n-1)-bit code to

form the n-bit Gray code.

R
eflection

115

#include <stdio.h>

#include <stdlib.h> // malloc

#include <math.h> // double pow(double, double)

#define columns 8 // The example limits the size to 7 columns

#define rows 256 // 256 = pow(2, 8)

char **gcode(int n);

void main() {

 char **g; int i, n, p;

 printf("please enter an integer n for n-bit Gray code\n");

 scanf("%d", &n); // Note: 0 < n < columns

 g = gcode(n); // Call recursive gcode function

 p = (int) pow(2, n);

 for (i=0; i<p; i++)

 printf("%s\n", g[i]); // Print each element in array

}

char **gcode(int n) {

 int i, j, p, q;

 char **sizem, **sizen; // pointers to 2-D arrays

 p = (int) pow(2, n); // The length of size-n-code

 q = (int) p/2; // create an array of pointers

 sizen = (char **) malloc(sizeof(char[rows]));

 for (i =0; i<p; i++)

 sizen[i] = (char *) malloc(sizeof(char[columns]));

 if (n<=1) { // stopping condition

 sizen[0][0] = '0';

 sizen[0][1] = '\0'; // add terminator

 sizen[1][0] = '1';

 sizen[1][1] = '\0'; // add terminator

 return sizen;

 }

 else {

 sizem = gcode(n-1);

 for (i = 0; i < q; i++) {

 sizen[i][0] = '0';

 for (j = 1; j<=n; j++)

 sizen[i][j] = sizem[i][j-1];

 }

 for (i = 0; i < q; i++) {

 sizen[q+i][0] = '1';

 for (j = 1; j<=n; j++)

 sizen[q+i][j] = sizem[q-i-1][j-1];

 }

 for (i = 0; i < q; i++)

 free(sizem[i]); // free each row

116

 free(sizem); // free the index

 return sizen;

 }

}

2.9 Modular design
Functions bring a level of abstraction into our programs. The abstraction makes our program easier to
understand and to manage. However, the programming task can still become too large to understand. We
need to introduce another level of abstraction, that is, modular design. Other advantages of modular design
include:

Sharing: We can group some frequently used functions and data into a module for being shared
with other programmers (e.g., library functions).
Separate compilation: This is a maintenance issue. If we find a programming error or we need to
make functional modifications in a part of the program, we do not have to recompile the entire
program.
Expandability: We can easily add new modules into the system.

So far, we have been focusing on designing a program to solve relatively small problems. This is called
programming-in-the-small. We need the skill of programming-in-the-small before we can do
programming-in-the-large, which combines programming modules into a large program.

To design a module in a large system, we need to separate the specification from the implementation. The
specification part tells what the module does and gives an external view of the module, while the
implementation part gives code that implements the specification. Variable and function names given in
the specification part are available to users inside the module as well as outside the module.

All programming languages provide mechanisms to support modular design. In C, specifications of
programs are stored in .h files, while implementations are stored in .c files. In order to use functions defined
in another module named, say, modulename.c, we need to use

#include "modulename.h" // user-defined header files are quoted by "…"

Consider the traffic light example in Section 2.4. Since the sleep function may be used by other programs,
we want to put this function and possibly other frequently used functions into a module, say, called
mylib.c, which contains the following code:

// file name: mylib.c

#include<time.h>

const float pi = 3.14159265;

// Sleep for a specified number of seconds.

void sleep(int wait) {

 clock_t goal; // clock_t defined in <time.h>

 goal = wait * CLOCKS_PER_SEC + clock();

 while(goal > clock())

 ;

}

// This function computes the volume of a cylinder:

double cylinder (int h, int r) { //h: height, r: radius

117

 const double pi = 3.14159265;

 return pi*r*r*h;

}

Notice that a module does not need to have a main() function.

Then, we can put the headers of all functions, the type definitions, as well as the global variables to be
shared among different modules, in the header file called mylib.h. In this example, we have only two
functions and one type definition. Thus, the header file should look like:

typedef enum {red, amber, green} traffic_light;

void sleep(int wait);

double cylinder (int h, int r);

In the main program of the traffic light example, we do not need the function sleep, or the type definition.
The code of the main function is as follows:

#include <stdio.h> // system library uses angle brackets to include

#include "mylib.h" // user library uses quotes to include

main() {

traffic_light x = red;

printf("Red:\tStop!\n");

while (1)

 switch (x) {

 case amber:

 sleep(1); //sleep 1 second

 x = red;

 printf("Red:\tStop!\n"); break;

 case red:

 sleep(6); //sleep 6 second

 x = green;

 printf("Green:\tGo>>>\n"); break;

 case green:

 sleep(12); //sleep 12 second

 x = amber;

 printf("Amber:\tBrake...\n");

 }

}

In Visual Studio programming environment, all modules (.c files) should be placed in the folder “Source
Files” and all the user-defined header files should be placed in the folder “Header Files,” as shown in Figure
2.29.

118

Figure 2.29. Organizing the modules and header files.

In object-oriented computing, better modularity is the main focus. We will discuss program design with
multiple classes and multiple modules in more detail in Chapter 3.

2.10 Case Study: Putting All Together
In this section, we give an example that applies many of the data structures and programming techniques
learned in this chapter, including array, string, enumeration type, pointer, pointer to pointer, linked list,
global variable versus local variable, call-by-value and call-by-address parameter-passing mechanisms,
memory management and garbage collection, and recursion. The memory management and garbage
collection will be further discussed in the C++ chapter in more detail, where memory leak detection and
detection tool will be introduced.

The first part of the example includes the declaration, forward declaration, the main function, and the
branching function.

#include <stdio.h>

#include <string.h>

#include <ctype.h>

#include <stdlib.h>

#pragma warning(disable: 4996) // comment out if not in Visual Studio

typedef enum { diploma = 0, bachelor, master, doctor } education;

// A struct for nodes of the linked list.

struct container {

 struct person *plink; // points to a struct person.

 struct container *next;

};

// A struct to hold attributes of a person

struct person {

 char name[32];

 char email[32];

 int phone;

Library header file includes
the headers of all functions

Library file storing the
frequently used C functions

Main function that uses
the library functions

119

 education degree;

};

void branching(char c);

char* get_name();

void print_list(struct container* root);

int insertion(struct container** ptrToHead); // note: pointer to pointer

struct container* search(struct container* root, char* sname);

void deleteOne(struct container** ptrToHead);

void deleteAll(struct container** ptrToHead);

void print_all(struct container* root);

/**/

int main(){

 // Declare head as a local variable of main function

 struct container* head = NULL;

 char ch = 'i';

 do { // Print a menu for selection

 printf("Enter your selection\n");

 printf("\ti: insert a new entry\n");

 printf("\td: delete one entry\n");

 printf("\tr: delete all entries\n");

 printf("\ts: search an entry\n");

 printf("\tp: print all entries\n");

 printf("\tq: quit \n");

 fflush(stdin); // Flush the input buffer. Read section 2.6.3

 ch = tolower(getchar()); // Convert uppercase char to lowercase.

 branching(ch, &head);

 printf("\n");

 } while (ch != 113); // 113 is 'q' in ASCII

 return 0;

};

/**/

// Branch to different tasks: insert a person, search for a person,

// delete a person, and print all added persons.

void branching(char c, struct container** ptrToHead){

 char *p;

 switch (c) {

 case 'i':

 insertion(ptrToHead);break;

 case 's':

 p = get_name();

 search(*ptrToHead, p);break;

 case 'd':

 deleteOne(ptrToHead);break;

 case 'r':

120

 deleteAll(ptrToHead);break;

 case 'p':

 print_all(*ptrToHead);break;

 case 'q':

 deleteAll(ptrToHead); // free all memory when quit

 break;

 default:

 printf("Invalid input\n");

 }

};

The relationship between the container struct and the person struct is illustrated in Figure 2.30. Notice that
the head pointer is declared as a local variable in the main function, which is not visible in the other
functions, and thus, we need to use parameter passing to access and to modify the head pointer. To read the
head pointer, we can use call-by-value parameter passing, which are used in the functions search and
printAll. In the functions deleteOne and deleteAll, we need to modify the head pointer, and we need to pass
the address of head pointer into these functions, which is thus a pointer to a pointer.

Figure 2.30. A linked list of containers, with pointers to a person node and to the next container.

In the following, we provide the remaining functions listed in the forward declaration part and discuss their
implementation.

/**/

// Delete the first person node in the linked list.

void deleteOne(struct container** ptrToHead) {

 int i = 0;

 struct container *toDelete = NULL;

 if (*ptrToHead == NULL) {

 printf("\nThe list is empty. Nothing was deleted.\n");

 }

 else if ((*ptrToHead)->next == NULL) {

 free((*ptrToHead)->plink);

*plink

*next

container

name

email

phone

education

*plink

*next

name

email

phone

education

*plink

*next

name

email

phone

education

person

null

headptrToHead

121

 free(*ptrToHead);

 *ptrToHead = NULL;

 }

 else {

 toDelete = *ptrToHead;

 *ptrToHead = (*ptrToHead)->next;

 free(toDelete->plink);

 free(toDelete);

 toDelete = NULL;

 }

 printf("\nA container node was deleted.\n");

};

/**/

// Recursively delete the entire list given the head of a linked list.

void deleteAll(struct container** ptrToHead) {

 struct container* pnext;

 if (*ptrToHead == NULL)

 return;

 else {

 deleteOne(ptrToHead);

 deleteAll(ptrToHead);

 }

};

// Read the input from the user.

char * get_name() {

 char *p = (char *) malloc(32); // Use dynamic memory which does not go
out of scope

 printf("Please enter a name for the search: ");

 scanf("%s", p);

 return p;

};

/**/

// Inserts the person to the sorted place. Note: A < a, and A will be
ordered first.

int insertion(struct container** ptrToHead) {

 int i = 0;

 struct container* newNode = NULL, *iterator = NULL, *follower = NULL;

 struct person* newPerson = NULL;

 newNode = (struct container*) malloc(sizeof(struct container));

 // Case 1: The program is out of memory.

 if (newNode == NULL) {

 printf("Fatal Error: Out of Memory. Exiting now.");

 return 0;

 }

122

 // Case 2: The structure still has unfilled slots.

 else {

 newPerson = (struct person*) malloc(sizeof(struct person));

 if (newPerson == NULL) {

 printf("Fatal Error: Out of Memory. Exiting now.");

 return 0;

 }

 else {

 printf("Enter the name:\n");

 scanf("%s", newPerson->name);

 printf("Enter the phone number:\n");

 scanf("%d", &newPerson->phone, sizeof(newPerson->phone));

 printf("Enter the e-mail:.\n");

 scanf("%s", newPerson->email);

 do {

 printf("Enter the degree: select 0 for diploma, select 1
for bachelor, select 2 for master, or select 3 for doctor:\n");

 scanf("%d", &newPerson->degree);

 if (newPerson->degree< diploma || newPerson->degree >
doctor) {

 printf("Please enter a value from 0 to 3.\n");

 }

 } while (newPerson->degree < diploma || newPerson->degree >
doctor);

 newNode->plink = newPerson;

 if (*ptrToHead == NULL) {

 *ptrToHead = newNode;

 (*ptrToHead)->next = NULL;

 return 0;

 }

 else {

 if (strcmp(newPerson->name,(*ptrToHead)->plink->name)<0){

 newNode->next = *ptrToHead;

 *ptrToHead = newNode;

 return 0;

 }

 iterator = *ptrToHead;

 follower = iterator;

 while (iterator != NULL) {

 if (strcmp(newPerson->name,iterator->plink->name)<0){

 newNode->next = iterator;

 follower->next = newNode;

 return 0;

 }

123

 follower = iterator;

 iterator = iterator->next;

 }

 follower->next = newNode;

 newNode->next = NULL;

 return 0;

 }

 }

 }

 return 0;

};

/**/

// Print the name, e-mail, phone, and education level of each person.

// It calls the helper printFirst to recursively print the list

void print_all(struct container* root) {

 struct container* iterator = root;

 //Case 1: The structure is empty

 if (iterator == NULL) {

 printf("\nNo entries found.\n");

 return;

 }

 // Case 2: The structure has at least one item in it

 else{

 printFirst(root);

 return;

 }

};

void printFirst(struct container* root) {

 if (root != NULL){

 printf("\n\nname = %s\n", root->plink->name);

 printf("email = %s\n", root->plink->email);

 printf("phone = %d\n", root->plink->phone);

 switch (root->plink->degree) {

 case diploma:

 printf("degree = diploma\n");

 break;

 case bachelor:

 printf("degree = bachelor\n");

 break;

 case master:

 printf("degree = master\n");

 break;

 case doctor:

 printf("degree = doctor\n");

124

 break;

 default:

 printf("System Error: degree information corruption.\n");

 break;

 }

 printFirst(root->next);

 }

};

/**/

//Find a person by comparing names given the head of the linked list.

struct container* search(struct container* root, char* sname) {

 struct container* iterator = root;

 while (iterator != NULL) {

 if (strcmp(sname, iterator->plink->name) == 0) {

 printf("\n\nname = %s\n", iterator->plink->name);

 printf("email = %s\n", iterator->plink->email);

 printf("phone = %d\n", iterator->plink->phone);

 switch (iterator->plink->degree) {

 case diploma:

 printf("degree = diploma\n");

 break;

 case bachelor:

 printf("degree = bachelor\n");

 break;

 case master:

 printf("degree = master\n");

 break;

 case doctor:

 printf("degree = doctor\n");

 break;

 default:

 printf("System Error: degree information corruption.\n");

 break;

 }

 free(sname); // garbage collection

 return iterator;

 }

 iterator = iterator->next;

 }

 printf("The name does not exist.\n");

 free(sname); // garbage collection

 return iterator;

};

125

2.11 Summary
In this chapter, we started from basic issues in writing imperative C/C++ programs and went through
important and advanced topics in the languages. The focus is on the topics that are significantly different
from Java. The major topics we discussed are:

Getting started with writing simple C/C++ programs;
Control structures in C/C++ using syntax graphs;
Relationships among memory locations, memory addresses, variable names, variable addresses,
and the value stored in a variable;
Pointers and pointer variables, referencing, and dereferencing;
Array-based and pointer-based string operations;
Three different ways of introducing constants: macro, const, and enumeration types;
Structure types and compound data types;
File type and file operations;
Three major parameter-passing mechanisms: call-by-value, call by address, and call-by-alias;
Recursive structures; and
A brief introduction to modular design. More modular design will be discussed in the C++ chapter.

Table 2.5 summarizes the features supported by C and C++, as well as by Java. As can be seen from the
table, C and C++ allow more flexibility, whereas Java is more restricted.

Feature C and C++ Java
Macro YES NO
Inlining YES YES
Global variables YES NO
Static variables YES YES
Pointer YES NO
Value semantics for all types YES Primitive types
Reference semantics for all types YES Reference types
String type char array YES
Union type YES NO
Parameter passing: call-by-value YES Primitive types
Parameter passing: call-by-alias C++ only NO
Parameter passing: call-by-address YES Reference types
Recursive call and application of the fantastic-four abstract approach YES YES

Table 2.5. Feature comparison between C/C++ and Java.

127

2.12 Homework, programming exercises, and projects

1. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than
one answer is acceptable.

1.1 Forward declaration in modern programming practice
provides a level of abstraction. is never necessary.
is not required if <iostream> is included. is useless.

1.2 C language does not have a Boolean type because
C is not designed to handle logic operations. C uses strong type checking.

Boolean values can be represented as integers. C++ has already defined a Boolean type.

1.3 Two functions are said to be mutually recursive if
one function is defined within the other function.
they call each other.
each function calls itself.
they are independent of each other.

1.4 Assume that a string is declared as char str[] = "alpha", what is the return value of sizeof
(str)?

1 5 6 7 40

1.5 Assume that two pointers are declared as: char *str1 = "alpha", *str2;
Which assignment statement below will lead to a semantic error?

str2 = str1; str2 = 0; str1 = str1+1; *str2 = "Hi";

1.6 Which of the following declarations will cause a compilation error?
char s[5]; char s[3] = "hello";

char s[]; char s[] = {'s', 't', 'r'};

1.7 Given a declaration: int i = 25, *j = &i, **k = &j;
which of the following operations will change the value of variable i?

j++; k++; (*k)++; (**k)++;

1.8 Given a declaration: int i = 25, *j = &i, **k = &j;
which of the following operations will cause a compilation error?
 i++; (&i)++; (*j)++; (**k)++;

1.9 What is the maximum number of padding bytes that a compiler can add to a structure?
1 2 3 more than 3

1.10 The enumeration type of values are stored in the memory as

bool double int string

128

1.11 If we want to store a linked list of structures, with each structure containing different types of data,
into a disk file, what file type should we choose?

array file binary file text file structure file

1.12 The reason that we need to call fflush() or cin.ignore() is because the previous

output leaves a character in the file buffer. output fails to complete its operation.

input leaves a character in the file buffer. input fails to complete its operation.

1.13 Assume the following structure is defined in a 32-bit programming environment.
struct myNode {

 char name[30];

 char location[32];

 struct myNode* next;

} x, *y;

what is the size of x?

4 bytes 66 bytes 68 bytes 72 bytes

what is the size of x?

4 bytes 66 bytes 68 bytes 72 bytes

1.14 What parameter-passing mechanism cannot change the variable values in the caller?

call-by-value call-by-alias call-by-address None of them

1.15 What parameter-passing mechanism requires the actual parameter to be a variable?

call-by-value call-by-alias call-by-address None of them

1.16 Given the forward declaration: void foo(char c, int &n); what parameter passing mechanisms are
used? Select all that apply.

call-by-value call-by-alias call-by-address None of them

1.17 What type of recursive function is structurally equivalent to a while-loop?

head-recursion middle-recursion tail-recursion mutual recursion

The Ackermann function is defined recursively for two nonnegative integers k and n as follows. Answer
the following three questions based on the function and the fantastic-four abstract approach.

A(s, t) =

1.18 What is the size-n problem?

(s, t) A(s, t) A(n) n

1.19 What is the stopping condition and return value at the stopping condition?

s = 0 and t+1 s = 0 and t = 1 s > 0 and t = 0 s > 0 and t > 0

129

1.20 What is the size-m problem that can be used for calculating the size n problem? Select all that apply.

A(s, t) A(s-1, 1) A(s, t-1) A(s-1, A(s, t-1))

1.21 The data stored in a binary search tree is sorted, if the tree is traversed in

preorder postorder inorder in any order

1.22 Consider an array, a linked list, doubly linked list, and a binary search tree. Which data structure
requires fewest comparisons in average to search an element stored in the data structure?

binary search tree array doubly linked list linked list

2. What is a byte and what is a word in memory? What is the name of a variable? What is the address
of a memory location? What is the content of a memory location?

3. What is the difference between a memory location and a register? How do we access a memory
location and a register?

4. A variable has several aspects (name, address, value, location), and different aspects are used in
different places.

4.1 If a variable is used on the left-hand side of an assignment statement, which aspect is actually used?

4.2 If a variable is used on the right-hand side of an assignment statement, which aspect is actually used?

4.3 If we apply the address-of operator “&” to the variable (i.e., &v), which aspect is returned?

5. Given a piece of C code
1 #include <stdio.h>

2 void main() {

3 char str[] = "hello", *p;

4 p = str;

5 while (*p != '\0')

6 (*(p++))++;

7 printf("str = %s, p = %s\n", str, p);

8 }

5.1 What is the exact output of the printf statement?

5.2 At line 3, if we replace char str[] = "hello" by char *str = "hello", it will cause

compilation error. runtime error. no error at all. incorrect output.

5.3 At line 3, if we replace *p; with char *p = str; it will cause

compilation error. runtime error. no error at all. incorrect output.

5.4 In lines 5 and 6, the string is accessed using a pointer and pointer operations. Rewrite the program
from line 3 to line 6 so that only array operations are used to access the string.

6. What are the three different methods of defining constants in C/C++? What are the differences of the
constants defined in these methods?

130

6.1 Can a constant defined by const ever be modified? If yes, how and why? If no, why?

6.2 Can a constant defined by #define ever be modified? If yes, how and why? If no, why?

6.3 What are the advantages of defining an enumeration type instead of using an integer type directly?

7. What is the difference between a structure type and a union type? In what circumstances are union
types useful?

8. Parameter passing

8.1 What is a formal parameter and what is an actual parameter?

8.2 What is the difference between call-by-value and call-by-alias?

8.3 Where do you need to use call-by-value and where do you need to use call-by-alias?

8.4 How do you use call-by-value and call-by-alias?

9. Structure type

9.1 How do you define a structure type? How do you declare a variable of a structure type? How do you
declare a pointer to a structure type variable?

9.2 How do you obtain memory statically for a structure type variable? How do you create dynamic
memory and link it to a pointer?

9.3 How do you use the name of a structure and a pointer to a structure to access the fields in the
structure?

10. Programming exercise. This question gives you practice in using declarations, forward declarations
and scopes of functions and variables, and type checking in C and C++.

Given the C program below, answer the following questions.
// This program shows function and variable declarations and their
scopes.

#include <stdio.h>

int keven = 0, kodd = 0;

long evennumber(short);

long oddnumber(short);

int even(int);

int evennumber(int a) { // genuine declaration

 if (a == 2) {

 printf("keven = %d, kodd = %d\n", keven, kodd);

 return keven;

 }

 else {

 a = (int)a/2;

 if (even(a)) { // Is an even?

 keven++;

 return evennumber(a);

 }

131

 else {

 kodd++;

 return oddnumber(a);

 }

 }

 // return a;

}

int oddnumber(int b) { // genuine declaration

 if (b == 1) {

 printf("keven = %d, kodd = %d\n", keven, kodd);

 return kodd;

 }

 else {

 b = 3*b+1;

 if (!even(b)) { // Is b odd?

 kodd++;

 return oddnumber(b);

 }

 else {

 keven++;

 return evennumber(b);

 }

 }

 // return b;

}

int even(int x) { // % is modulo operator.

 return ((x%2 == 0) ? 1 : 0);

}

void main() {

 register short r = 0; // a register type variable is faster,

 int i = r; // it is often used for loop variable

 float f;

 for (r = 0; r < 3; r++) {

 printf("Please enter an integer number that is >= 2\n");

 scanf("%d", &i);

 if (even(i))

 f = evennumber(i);

 else

 f = oddnumber(i);

 }

}

10.1 Save the file as declaration.c. (consider the program to be a C program). Choose the commands
under the menu “Build”:

132

Compile declaration.c

Build declaration.exe

Execute declaration.exe

What errors or warning messages are displayed?

10.2 Save the file as declaration.cpp. Repeat question 10.1.

10.3 Analyze the type requirement of functions and variables in the given program. Make minimum
changes to declaration.cpp to remove all compilation errors and warnings.

10.4 Explain global variables and local variables. List the global variables and local variables in the
program. The parameters of a function are local variables too.

10.5 Can we swap the order of the two variable declarations: “register short r = 0;” and “int i
= r;”? Explain your answer according to C/C++’s scope rule.

10.6 Explain the forward declaration. If the forward declarations in the program were removed, what
would happen?

10.7 Explain type casting and type coercion. List all type castings and type coercions used in the program.

10.8 According to the analysis above and the definition of strong type checking, are C and C++ strongly
typed? Which language’s typing system is stronger, C or C++?

10.9 Program correctness/reliability issue. A correct program must terminate for all valid inputs. The
given program has been tested by many people. It has always terminated for the inputs used.
However, nobody so far can prove that this program can terminate for any integer input. Thus, this
program is often used as an example of improperly designed loop structure or recursive function. A
good programming practice in writing loop or recursive function is to guarantee that the loop variable
or the size-related-parameter (they control the number of iterations) is defined on an enumerable set
(e.g., integer), has a lower bound (e.g., 0), and decreases strictly (e.g., 9, 6, 5, 3, 2, 1). Add a print-
statement in functions evennumber and oddnumber to print the size-related parameter value and
use input values i = 3, 4, and 7, respectively, to test the program. Give the three sequences of values
printed by the added print-statements.

10.10 Compare questions 10 with homework question 17 in Chapter 1 and explain why it is difficult to
prove that the program can terminate for any integer input.

11. The following program will open and read an existing text file called file1.txt, add a number
between 1 and 25 to each and every character, and then write the modified text into a new file called
file2.txt. Read this program carefully and answer the questions following the program.
// Filename: encryption0.c

#include <stdio.h>

#include <string.h>

// Read all characters in the file and put them in a string str

void file_read(char *filename, char *str) {

133

 FILE *p; // p is declared as a pointer to the FILE type.

 int index=0;

 p=fopen(filename, "r"); // Open the file for "read".

 // Other options incl. "w" (write) and "a"
(append)

 while(!feof(p)) // while not reaching the end-of-file
character

 *(str+index++)=fgetc(p); //read a character from file and put
it

 // in str. Then p is increased automatically.

 str[index-1]='\0'; // add the string terminator

 puts(str); // print str. You can use printf too.

 fclose(p); // close the file

}

void encrypt(int offset, char *str) {

 int i,l;

 l=strlen(str);

 printf("unencrypted str = \n%s\n", str);

 for(i=0;i<l;i++)

 str[i] = str[i]+offset;

 printf("encrypted str = \n%s \nlength = %d\n", str, l);

}

void file_write(char *filename, char *str) {

 int i, l;

 FILE *p;

 p=fopen(filename, "w"); // open the file for "write".

 l = strlen(str); // string-length

 for(i=0;i<l;i++)

 fputc(*(str+i),p); // write a character in the file
pointed

 // by p. p is increased automatically

 fclose(p); // close the file

}

void main(void) {

 char filename[25];

 char string[1024];

 strcpy(filename, "file1.txt");

 file_read(filename, string);

 encrypt(7, string);

 strcpy(filename, "file2.txt");

 file_write(filename, string);

}

11.1 Enter the following text in a text file named file1.txt.
Politician A said "Politician B is a liar, because he promised in last
year's election that he would give every homeless person a home".

134

Politician B said "Politician A is a liar, because he promised in last
year's election that he would give every jobless person a job". Are these
functions mutually recursive?

Enter the following text in a text file named file4.txt.
Politician B said "Politician A is a liar, because he promised in last
year's election that he would give every homeless person a home".

Politician A said "Politician B is a liar, because he promised in last
year's election that he would give every jobless person a job". These
quotations are not mutually recursive.

Use file1.txt file and the key = 7 as the test case for the program encrytion0.c. Load the
program into Visual C++ and execute the program. The program should generate a file called
file2.txt.

Hint: file1.txt must be in the same directory as the program.

11.2 Rewrite the void encrypt(int offset, char *str) function in the given program using
pointer operations to replace array operations, for example, replace str[i] with *(str+i).
Replace the for-loop with a while-loop, where you must use a terminator to detect the end of the
string. Comment the code where changes have been made.

11.3 Write a function called int difference(char *filename1, char *filename2) that
compares two files. The file’s names must be passed to the parameters filename1 and filename2,
respectively. The program should return the number of characters that are different (mismatches).
For example, if the two files are exactly the same, the function returns 0. If the program detects 10
mismatches, it returns 10. If one file is longer than the other, the extra characters count as differences.
This function must use string and pointer operations and compare each character one after another.
You may not use the library function for string comparison. Write at least two lines of comment at
the beginning of the function, describing what this function does and how it is implemented.

11.4 Write a function void faultinjection(char *filename1, char *filename2, int n)
that injects n character faults into the file specified by the parameter filename1. Each character
fault is a modification to a character by adding a random number between −10 and 10. The positions
of the n faults are chosen randomly between the first character and the last character in the file. The
modified file is stored in the file specified by the parameter filename2.

Note: To generate a random number, you can call a library function, for example, rand(). For a
simple example, the following code prints 20 pseudo random numbers between 0 and 99. The
function srand(unsigned) seeds the random-number generator with the current time so that the
numbers generated by rand() will be different every time you call it.
#define size 100

#include <stdio.h>

#include <stdlib.h> // function rand() is defined in this library

#include <time.h> // function time(NULL)is defined in this library

main() {

 int i, rdm;

 srand((unsigned)time(NULL)); // Use current time as seed

 for (i = 0; i<20; i++) {

 rdm = rand() % size; // modulo operation

 printf("random = %d\n", rdm);

135

 }

}

11.5 Rewrite the main() function to perform the following operations described in the pseudo code.
encrypt file1.txt into file2.txt

decrypt file2.txt into file3.txt // use a negative key

Find the differences between file1.txt and file3.txt

Find the differences between file1.txt and file4.txt

Call faultinjection (file4.txt, file5.txt, n); // choose n = 5

Find the differences between file4.txt and file5.txt

12. The following program generates maps representing mazes, where blank (space) characters represent
open rooms through which a path may pass, while “X” characters represent closed rooms that cannot
be used on any path. The starting position is marked by a character “S” and the goal position is
marked by a character “G.” For a given maze, one can write a program to check if there is path from
“S” to “G,” and print the paths if they exist. In this exercise, we generate only the mazes and do not
attempt to write a program to find the paths. You are given the following C code, try to understand
what it does and make the changes given in the following questions.
// This program exercises the operations on multidimensional array

#include <stdio.h>

#pragma warning(disable: 4996) // comment out if not in Visual Studio

#define maxrow 50

#define maxcolumn 50

char maze[maxrow][maxcolumn]; // Define a static array of arrays of
characters.

int lastrow = 0;

// Forward Declarations

int triple(int);

void initialization(int, int);

void randommaze(int, int);

void printmaze(int, int);

int triple(int x) { // % is modulo operator.

 return ((x % 3 == 0) ? 1 : 0);

}

void initialization(int r, int c) {

 int i, j;

 for (i = 0; i < r; i++){

 maze[i][0] = 'X'; // add border

 maze[i][c - 1] = 'X'; // add border

 maze[i][c] = '\0'; // add string terminator

 for (j = 1; j < c - 1; j++)

 {

 if ((i == 0) || (i == r - 1))

 maze[i][j] = 'X'; // add border

 else

136

 maze[i][j] = ' '; // initialize with space

 }

 }

}

// Add 'X' into the maze at random positions

void randommaze(int r, int c) {

 int i, j, d;

 for (i = 1; i < r - 1; i++) {

 for (j = 1; j < c - 2; j++) {

 d = rand();

 if (triple(d))

 {

 maze[i][j] = 'X';

 }

 }

 }

 i = rand() % (r - 2) + 1;

 j = rand() % (c - 3) + 1;

 maze[i][j] = 'S'; // define Starting point

 do {

 i = rand() % (r - 2) + 1;

 j = rand() % (c - 3) + 1;

 } while (maze[i][j] == 'S');

 maze[i][j] = 'G'; // define Goal point

}

// Print the maze

void printmaze(int r, int c) {

 int i, j;

 for (i = 0; i < r; i++) {

 for (j = 0; j < c; j++)

 printf("%c", maze[i][j]);

 printf("\n");

 }

}

void main() {

 int row, column;

 printf("Please enter two integers, which must be greater than 3 and
less than maxrow and maxcolomn, respectively\n");

 scanf("%d\n%d", &row, &column);

 while ((row <= 3) || (column <= 3) || (row >= maxrow) || (column >=
maxcolumn)) {

 printf("both integers must be greater than 3. Row must be less
than %d, and column less than %d. Please reenter\n", maxrow, maxcolumn);

137

 scanf("%d\n%d", &row, &column);

 }

 initialization(row, column);

 randommaze(row, column);

 printmaze(row, column);

 //encryptmaze(row, column);

 //printmaze(row, column);

 //decryptmaze(row, column);

 //printmaze(row, column);

}

The program above can be written using pointer operations, instead of using array indices, The code
below shows the pointer version of the initialization function.
void initialization(int r, int c) {

 int i, j;

 char *p = 0;

 for (i = 0; i <= r; i++){

 p = &maze[i][0];

 // Tt points to initial address of the ith row of the maze

 *p = 'X'; // add left border

 *(p + c - 1) = 'X'; // add right border

 *(p + c) = '\0'; // add string terminator

 for (j = 1; j < c - 1; j++){

 if ((i == 0) || (i == r - 1))

 *(p + j) = 'X'; // add top and bottom borders

 else

 *(p + j) = ' '; // initialize inner maze with space

 }

 }

}

Now, you can follow the example to complete the following exercise questions.

12.1 Rewrite the function int triple(int) using macro definition.

12.2 Rewrite the function randommaze(row, column) by substituting pointer operations for all array
operations. You may not use indexed operation like maze[i][j], except getting the initial value of the
pointer.

12.3 Rewrite the function printmaze(row, column) by substituting string operations for all character
operations.

12.4 Write the function encryptmaze(row, column) based on the pointer operations. The function will
encrypt the maze in the following secret rules:

An integer i will be added to each space character, where i is the row number of the character.

An integer j will be added to each non-space character (X, S, and G), where j is the column number
of the character. Do not encrypt the terminator character ‘\0’.

138

12.5 Write the function decryptmaze(row, column) to decrypt the maze.

12.6 Call encryptmaze(row, column) and decryptmaze(row, column) functions in the main() function by
removing the comment marks, and call the printmaze(row, column) after encryption and after
decryption.

13. You are given the following program. Save the given program under the name contactbook.c.
The program takes a command line parameter: the database's name in which the contact records
are to be saved, assuming the database name is person.dbms.

You can pass command line parameters within the Visual Studio environment as follows:
(1) Use Visual Studio to compile and build the program contactbook.c.
(2) Choose menu “Project” and “Properties...”.
(3) Under the item “Configuration Properties,” click on “Debugging,” and enter the

file name person.dbms to the right of the field “Command Arguments.”
(4) Click OK to return.
(5) Now you can execute the program.
II. You can also pass command line parameters using the following method:
(1) Compile and build the program.
(2) Choose MS Windows “Start” Menu.
(3) Choose “Run ...”.
(4) Click on “Browse ...”.
(5) Browse to the folder where your contactbook.c is stored.
(6) Go into the folder “Debug.” (This folder should have been created by the compile and build

commands in step 1.)
(7) Choose the executable program called contactbook and then click “open.”
(8) You should see the path “...\Debug\contactbook.exe.”
(9) Append the file name person.dbms to the end of the path, with a space in between. The

entire command sequence should look like: “...\Debug\ contactbook.exe”
person.dbms.

(10) Click “OK.” The program should start to run.

The tasks of this assignment are as follows.

13.1 Read the program carefully and make sure you understand the program and each function in the
program. Then add at least two lines of comments below each function’s forward declaration to
explain what the function does.

13.2 Write a function called sort(). The function should sort the existing linked list by the name field
in dictionary order. Use the simplest sorting algorithm. For example, the selection sort: find the name
with the smallest dictionary value and place it in the first place in the linked list, and then find the
name with the next smallest dictionary value and put it in the second place, and so on.

13.3 Add your sort() function into the program and modify the program to offer users an extra option
“sort” in the menu.

13.4 Test each function of the program: insert, delete, search, and sort. You can quit the program and
restart the program. The records stored in the linked list should be saved and reloaded into the list.
To copy the output in Visual Studio: Highlight the text you want to copy, click on the small icon

139

“c:\” at the top-left corner of the output window. Choose Edit-Copy. Then you can paste the output
into a text file.
// Manipulation of files and singly linked list

// Command line parameter inputs

#include <stdio.h>

#include <stdlib.h> // malloc is defined in this library

#include <string.h> // string operations are defined in this library

struct contact {

 char name[30];

 char phone[20];

 char email[30];

 struct contact *next;

}*head = NULL;

char *file_name;

// forward declaration

void menu();

void branching(char c);

struct contact* find_node(char *str, int *position);

void display_node(struct contact *node, int index);

int insert();

int deletion();

int modify();

int search();

void display_all();

void load_file();

void save_file();

int main(int argc, char *argv[]) {

 char ch;

 if(argc != 2) { // Two command line parameters required

 printf("Command Line Parameters Required !\n");

 printf("Try again......\n");

 getchar(); // enter any character to return

 return -1;

 }

 printf("SINGLY LINKED LIST\n");

 printf("******************");

 file_name = argv[1];

 load_file();

 do {

 menu();

 fflush(stdin); // Flush the standard input buffer

 ch = tolower(getchar()); // read a char, convert to lower case

 branching(ch);

140

 } while (ch != 'q');

 return 0;

}

void menu() {

 printf("\n\nMENU\n");

 printf("----\n");

 printf("i: Insert a new entry.\n");

 printf("d: Delete an entry.\n");

 printf("m: Modify an entry.\n");

 printf("s: Search for an entry.\n");

 printf("p: Print all entries.\n");

 printf("q: Quit the program.\n");

 printf("Please enter your choice (i, d, m, s, p, or q) --> ");

}

void branching(char c) {

 switch(c) {

 case 'i': if(insert() != 0)

 printf("INSERTION OPERATION FAILED.\n");

 else

 printf("INSERTED NODE IN THE LIST
SUCCESSFULLY.\n");

 break;

 case 'd': if(deletion() != 0)

 printf("DELETION OPERATION FAILED.\n");

 else

 printf("DELETED THE ABOVE NODE SUCCESSFULLY.\n");

 break;

 case 'm': if(modify() != 0)

 printf("MODIFY OPERATION FAILED.\n");

 else

 printf("MODIFIED THE ABOVE NODE SUCCESSFULLY.\n");

 break;

 case 's': if(search() != 0)

 printf("SEARCH FAILED.\n");

 else

 printf("SEARCH FOR THE NODE SUCCESSFUL.\n");

 break;

 case 'p': display_all();

 break;

 case 'q': save_file();

 break;

 default: printf("ERROR - Invalid input.\n");

 printf("Try again.....\n");

 break;

141

 }

 return;

}

int insert() {

 struct contact *node;

 char sname[30];

 int index = 1;

 printf("\nInsertion module...............\n");

 printf("Enter the name of the person to be inserted: ");

 scanf("%s", sname);

 node = find_node(sname, &index); // find duplicates

 if(node != NULL) {

 printf("ERROR - Duplicate entry not allowed.\n");

 printf("A entry is found in the list at index %d.\n", index);

 display_node(node, index);

 return -1;

 }

 else {

 node = (struct contact*) malloc(sizeof(struct contact));

 if (node == NULL) {

 printf("ERROR - Could not allocate memory !\n");

 return -1;

 }

 strcpy(node->name, sname);

 printf("Enter his telephone number: ");

 scanf("%s", node->phone);

 printf("Enter his email address: ");

 scanf("%s", node->email);

 node->next = head;

 head = node;

 return 0;

 }

}

int deletion() {

 char sname[30];

 struct contact *temp, *prev;

 int index = 1;

 printf("\nDeletion module...............\n");

 printf("Please enter the name of the person to be deleted: ");

 scanf("%s", sname);

 temp = head;

 while (temp != NULL) // search for the node to be deleted

 if (stricmp(sname, temp->name) != 0) { //case insensitive
strcmp

142

 prev = temp;

 temp = temp->next;

 index++;

 }

 else {

 printf("Person to be deleted is found at index %d.",
index);

 display_node(temp, index);

 if(temp != head) prev->next = temp->next;

 else head = head->next;

 free(temp); // Garbage collection

 return 0;

 }

 printf("The person with name '%s' does not exist.\n", sname);

 return -1;

}

int modify() {

 struct contact *node;

 char sname[30];

 int index = 1;

 printf("\nModification module...............\n");

 printf("Enter the name whose record is to be modified in the\n");

 printf("database: ");

 scanf("%s", sname);

 node = find_node(sname, &index);

 if(node != NULL) {

 printf("Person to be modified is found at index %d.", index);

 display_node(node, index);

 printf("\nEnter the new telephone number of this person: ");

 scanf("%s", node->phone);

 printf("Enter the new email address of this person: ");

 scanf("%s", node->email);

 return 0;

 }

 else {

 printf("The person with name '%s' does not exist \n", sname);

 printf("database.\n");

 return -1;

 }

}

int search() {

 struct contact *node;

 char sname[30];

 int index = 1;

143

 printf("\nSearch module...............\n");

 printf("Please enter the name to be searched in the database: ");

 scanf("%s", sname);

 node = find_node(sname, &index);

 if(node != NULL) {

 printf("Person searched is found at index %d.", index);

 display_node(node, index);

 return 0;

 }

 else {

 printf("The person '%s' does not exist.\n", sname);

 return -1;

 }

}

void display_all() {

 struct contact *node;

 int counter = 0;

 printf("\nDisplay module...............");

 node = head;

 while(node != NULL) {

 display_node(node, ++counter);

 node = node->next;

 }

 printf("\nNo more records.\n");

}

void load_file() {

 FILE *file_descriptor;

 struct contact *node, *temp;

 char str[30];

 file_descriptor = fopen(file_name, "rb"); // "b" for binary mode

 if(file_descriptor != NULL) {

 while(fread(str, 30, 1, file_descriptor) == 1) {

 node = (struct contact*) malloc(sizeof(struct contact));

 strcpy(node->name, str);

 fread(node->phone, 20, 1, file_descriptor);

 fread(node->email, 30, 1, file_descriptor);

 if(head != NULL) temp->next = node;

 else head = node;

 node->next = NULL;

 temp = node;

 }

 fclose(file_descriptor);

 }

}

144

void save_file() {

 FILE *file_descriptor;

 struct contact *node;

 file_descriptor = fopen(file_name, "w");

 if(file_descriptor != NULL) {

 node = head;

 while(node != NULL) {

 fwrite(node->name, 30, 1, file_descriptor);

 fwrite(node->phone, 20, 1, file_descriptor);

 fwrite(node->email, 30, 1, file_descriptor);

 node = node->next;

 }

 }

 else {

 printf("\nERROR - Could not open file for saving data !\n");

 getchar();

 exit(-1);

 }

}

struct contact* find_node(char *str, int *position) {

 struct contact *temp = head;

 while (temp != NULL) {

 if (stricmp(str, temp->name) != 0) {

 temp = temp->next;

 (*position)++;

 }

 else return temp;

 }

 return NULL;

}

void display_node(struct contact *node, int index) {

 printf("\nRECORD %d:\n", index);

 printf("\t\tName:\t\t%s\n", node->name);

 printf("\t\tTelephone:\t%s\n", node->phone);

 printf("\t\tEmail Address:\t%s\n", node->email);

}

14. Follow the fantastic-four abstract approach to write a recursive function to find the largest number
in a given array of integers.

15. In Section 2.7, an array is sorted by a simple recursive function. In step 3 of the fantastic-four abstract
approach, the m is selected to be n – 1. Rewrite the sorting program, but select m to be n/2 (merge
sort). You can assume that the initial size n is a power of 2 to simplify the problem.

16. Fibonacci numbers are defined by

145

2)2()1(
11
00

)(
nnfibnfib
n
n

nfib

Follow the fantastic-four abstract approach to implement the function in C.

16.1 Define the size-n problem.

16.2 Define the stopping conditions and the return values.

16.3 Define the size-m problem.

16.4 Explain how you construct the size-n solution from the size-m solutions.

16.5 Implement the function in C that can be used to compute Fibonacci numbers for the integer
n 0.

16.6 Write a main program that takes the input of n from the keyboard; call the recursive function, and
then print the result.

17. The Ackermann function is defined recursively for two nonnegative integers s and t as follows:

A(s, t) =

17.1 Follow the fantastic-four abstract approach to implement the function in C. The function should take
two integer numbers, m and n, and return the value of A(s, t), which is a long integer. Notice that the
Ackerman function is a very rapidly growing function. Even values of 4 for m and n will yield an
extremely large number, and thus using a long integer as the return value is necessary.

17.2 Write a main program that takes inputs of m and n from the keyboard; call the recursive function,
and then print the result.

