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Chapter 1  

Basic Principles of Programming Languages 

Although there exist many programming languages, the differences among them are insignificant compared 

to the differences among natural languages. In this chapter, we discuss the common aspects shared among 

different programming languages. These aspects include: 

 programming paradigms that define how computation is expressed; 

 the main features of programming languages and their impact on the performance of programs 

written in the languages; 

 a brief review of the history and development of programming languages; 

 the lexical, syntactic, and semantic structures of programming languages, data and data types, 

program processing and preprocessing, and the life cycles of program development. 

At the end of the chapter, you should have learned: 

 what programming paradigms are; 

 an overview of different programming languages and the background knowledge of these 

languages; 

 the structures of programming languages and how programming languages are defined at the 

syntactic level; 

 data types, strong versus weak checking; 

 the relationship between language features and their performances; 

 the processing and preprocessing of programming languages, compilation versus interpretation, 

and different execution models of macros, procedures, and inline procedures; 

 the steps used for program development: requirement, specification, design, implementation, 

testing, and the correctness proof of programs. 

The chapter is organized as follows. Section 1.1 introduces the programming paradigms, performance, 

features, and the development of programming languages. Section 1.2 outlines the structures and design 

issues of programming languages. Section 1.3 discusses the typing systems, including types of variables, 

type equivalence, type conversion, and type checking during the compilation. Section 1.4 presents the 

preprocessing and processing of programming languages, including macro processing, interpretation, and 

compilation. Finally, Section 1.5 discusses the program development steps, including specification, testing, 

and correctness proof. 
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1.1 Introduction 

1.1.1 Programming concepts and paradigms 

Millions of programming languages have been invented, and several thousands of them are actually in use. 

Compared to natural languages that developed and evolved independently, programming languages are far 

more similar to each other. This is because 

 different programming languages share the same mathematical foundation (e.g., Boolean algebra, 

logic); 

 they provide similar functionality (e.g., arithmetic, logic operations, and text processing); 

 they are based on the same kind of hardware and instruction sets; 

 they have common design goals: find languages that make it simple for humans to use and efficient 

for hardware to execute; 

 designers of programming languages share their design experiences. 

Some programming languages, however, are more similar to each other, while other programming 

languages are more different from each other. Based on their similarities or the paradigms, programming 

languages can be divided into different classes. In programming language’s definition, paradigm is a set 

of basic principles, concepts, and methods for how a computation or algorithm is expressed. The major 

paradigms we will study in this text are imperative, object-oriented, functional, and logic paradigms. 

The imperative, also called the procedural, programming paradigm expresses computation by fully 

specified and fully controlled manipulation of named data in a stepwise fashion. In other words, data or 

values are initially stored in variables (memory locations), taken out of (read from) memory, manipulated 

in ALU (arithmetic logic unit), and then stored back in the same or different variables (memory locations). 

Finally, the values of variables are sent to the I/O devices as output. The foundation of imperative languages 

is the stored program concept-based computer hardware organization and architecture (von Neumann 

machine). The stored program concept will be further explained in the next chapter. Typical imperative 

programming languages include all assembly languages and earlier high-level languages like Fortran, 

Algol, Ada, Pascal, and C. 

The object-oriented  programming paradigm is basically the same as the imperative paradigm, except that 

related variables and operations on variables are organized into classes of objects. The access privileges of 

variables and methods (operations) in objects can be defined to reduce (simplify) the interaction among 

objects. Objects are considered the main building blocks of programs, which support language features like 

inheritance, class hierarchy, and polymorphism. Typical object-oriented programming languages include 

Smalltalk, C++, Python, Java, and C#. 

The functional, also called the applicative, programming paradigm expresses computation in terms of 

mathematical functions. Since we express computation in mathematical functions in many of the 

mathematics courses, functional programming is supposed to be easy to understand and simple to use. 

However, since functional programming is very different from imperative or object-oriented programming, 

and most programmers first get used to writing programs in imperative or object-oriented paradigms, it 

becomes difficult to switch to functional programming. The main difference is that there is no concept of 

memory locations in functional programming languages. Each function will take a number of values as 

input (parameters) and produce a single return value (output of the function). The return value cannot be 

stored for later use. It has to be used either as the final output or immediately as the parameter value of 

another function. Functional programming is about defining functions and organizing the return values of 

one or more functions as the parameters of another function. Functional programming languages are mainly 

based on the lambda calculus that will be discussed in Chapter 4. Typical functional programming 
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languages include ML, SML, and Lisp/Scheme. Python and C# support direct applications of lambda 

calculus and many functional programming features. 

The logic, also called the declarative, programming paradigm expresses computation in terms of logic 

predicates. A logic program is a set of facts, rules, and questions. The execution process of a logic program 

is to compare a question to each fact and rule in the given fact and rulebase. If the question finds a match, 

we receive a yes answer to the question. Otherwise, we receive a no answer to the question. Logic 

programming is about finding facts, defining rules based on the facts, and writing questions to express the 

problems we wish to solve. Prolog is the only significant logic programming language. 

Some languages also support the reflective paradigm, which refers to the features that the programming 

languages have the ability of examining, introspecting, and modifying their own structure and behavior 

[https://en.wikipedia.org/wiki/Reflection_(computer_programming)]. Prolog’s dynamic rules belong to 

reflective features. Python and C# also support reflective features. 

It is worthwhile to note that many languages belong to multiple paradigms. For example, we can say that 

C++ is an object-oriented programming language. However, C++ includes almost every feature of C and 

thus is an imperative programming language too. We can use C++ to write C programs. Java is more object-

oriented, but still includes many imperative features. For example, Java’s primitive type variables do not 

obtain memory from the language heap like other objects. Lisp contains many nonfunctional features. 

Scheme can be considered a subset of Lisp with fewer nonfunctional features. Prolog’s arithmetic 

operations are based on the imperative paradigm. 

Nonetheless, we will focus on the paradigm-related features of the languages when we study the sample 

languages in the next four chapters. We will study the imperative features of C in Chapter 2, the object-

oriented features of C++ in Chapter 3, and the functional features of Scheme and logic features of Prolog 

in Chapters 4 and 5, respectively. 

1.1.2 Program performance and features of programming languages 

A programming language’s features include orthogonality or simplicity, available control structures, data 

types and data structures, syntax design, support for abstraction, expressiveness, type equivalence, and 

strong versus weak type checking, exception handling, and restricted aliasing. These features will be further 

explained in the rest of the book. The performance of a program, including reliability, readability, 

writability, reusability, and efficiency, is largely determined by the way the programmer writes the 

algorithm and selects the data structures, as well as other implementation details. However, the features of 

the programming language are vital in supporting and enforcing programmers in using proper language 

mechanisms in implementing the algorithms and data structures. Table 1.1 shows the influence of a 

language’s features on the performance of a program written in that language.  

The table indicates that simplicity, control structures, data types, and data structures have significant impact 

on all aspects of performance. Syntax design and the support for abstraction are important for readability, 

reusability, writability, and reliability. However, they do not have a significant impact on the efficiency of 

the program. Expressiveness supports writability, but it may have a negative impact on the reliability of the 

program. Strong type checking and restricted aliasing reduce the expressiveness of writing programs, but 

are generally considered to produce more reliable programs. Exception handling prevents the program from 

crashing due to unexpected circumstances and semantic errors in the program. All language features will 

be discussed in this book. 

1.1.3 Development of programming languages 

The development of programming languages has been influenced by the development of hardware, the 

development of compiler technology, and the user’s need for writing high-performance programs in terms 
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of reliability, readability, writability, reusability, and efficiency. The hardware and compiler limitations 

have forced early programming languages to be close to the machine language. Machine languages are the 

native languages of computers and the first generation of programming languages used by humans to 

communicate with the computer. 

                          Performance 

Language features 

 

Efficiency 

Readability/ 

Reusability 

 

Writability 

 

Reliability 

Simplicity/Orthogonality     

Control structures     

Typing and data structures     

Syntax design     

Support for abstraction     

Expressiveness     

Strong checking     

Restricted aliasing     

Exception handling     

Table 1.1. Impact of language features on the performance of the programs. 

Machine languages consist of instructions of pure binary numbers that are difficult for humans to remember. 

The next step in programming language development is the use of mnemonics that allows certain symbols 

to be used to represent frequently used bit patterns. The machine language with sophisticated use of 

mnemonics is called assembly language. An assembly language normally allows simple variables, branch 

to a label address, different addressing modes, and macros that represent a number of instructions. An 

assembler is used to translate an assembly language program into the machine language program. The 

typical work that an assembler does is to translate mnemonic symbols into corresponding binary numbers, 

substitute register numbers or memory locations for the variables, and calculate the destination address of 

branch instructions according to the position of the labels in the program. 

This text will focus on introducing high-level programming languages in imperative, object-oriented, 

functional, and logic paradigms. 

The first high-level programming language can be traced to Konrad Zuse’s Plankalkül programming system 

in Germany in 1946. Zuse developed his Z-machines Z1, Z2, Z3, and Z4 in the late 1930s and early 1940s, 

and the Plankalkül system was developed on the Z4 machine at ETH (Eidgenössisch Technische 

Hochschule) in Zürich, with which Zuse designed a chess-playing program. 

The first high-level programming language that was actually used in an electronic computing device was 

developed in 1949. The language was named Short Code. There was no compiler designed for the language, 

and programs written in the language had to be hand-compiled into the machine code. 

The invention of the compiler was credited to Grace Hopper, who designed the first widely known 

compiler, called A0, in 1951. 

The first primitive compiler, called Autocoder, was written by Alick E. Glennie in 1952. It translated 

Autocode programs in symbolic statements into machine language for the Manchester Mark I computer. 

Autocode could handle single letter identifiers and simple formulas. 
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The first widely used language, Fortran (FORmula TRANslating), was developed by the team headed by 

John Backus at IBM between 1954 and 1957. Backus was also the system co-designer of the IBM 704 that 

ran the first Fortran compiler. Backus was later involved in the development of the language Algol and the 

Backus-Naur Form (BNF). BNF was a formal notation used to define the syntax of programming languages. 

Fortran II came in 1958. Fortran III came at the end of 1958, but it was never released to the public. Further 

versions of Fortran include ASA Fortran 66 (Fortran IV) in 1966, ANSI Fortran 77 (Fortran V) in 1978, 

ISO Fortran 90 in 1991, and ISO Fortran 95 in 1997. Unlike assembly languages, the early versions of 

Fortran allowed different types of variables (real, integer, array), supported procedure call, and included 

simple control structures. 

Programs written in programming languages before the emergence of structured programming concepts 

were characterized as spaghetti programming or monolithic programming. Structured programming is a 

technique for organizing programs in a hierarchy of modules. Each module had a single entry and a single 

exit point. Control was passed downward through the structure without unconditional branches (e.g., goto 

statements) to higher levels of the structure. Only three types of control structures were used: sequential, 

conditional branch, and iteration. 

Based on the experience of Fortran I, Algol 58 was announced in 1958. Two years later, Algol 60, the first 

block-structured language, was introduced. The language was revised in 1963 and 1968. Edsger Dijkstra is 

credited with the design of the first Algol 60 compiler. He is famous as the leader in introducing structured 

programming and in abolishing the goto statement from programming. 

Rooted in Algol, Pascal was developed by Niklaus Wirth between 1968 and 1970. He further developed 

Modula as the successor of Pascal in 1977, then Modula-2 in 1980, and Oberon in 1988. Oberon language 

had Pascal-like syntax, but it was strongly typed. It also offered type extension (inheritance) that supported 

object-oriented programming. In Oberon-2, type-bound procedures (like methods in object-oriented 

programming languages) were introduced. 

The C programming language was invented and first implemented by Dennis Ritchie at DEC between 1969 

and 1973, as a system implementation language for the nascent Unix operating system. It soon became one 

of the dominant languages at the time and even today. The predecessors of C were the typeless language 

BCPL (Basic Combined Programming Language) by Martin Richards in 1967 and then the B written by 

Ken Thompson in 1969. C had a weak type checking structure to allow a higher level of programming 

flexibility. 

Object-oriented (OO) programming concepts were first introduced and implemented in the Simula 

language, which was designed by Ole-Johan Dahl and Kristen Nygaard at the Norwegian Computing Center 

(NCC) between 1962 and 1967. The original version, Simula I, was designed as a language for discrete 

event simulation. However, its revised version, Simula 67, was a full-scale general-purpose programming 

language. Although Simula never became widely used, the language was highly influential on the modern 

programming paradigms. It introduced important object-oriented concepts like classes and objects, 

inheritance, and late binding. 

One of the object-oriented successors of Simula was Smalltalk, designed at Xerox PARC, led by Alan Kay. 

The versions developed included Smalltalk-72, Smalltalk-74, Smalltalk-76, and Smalltalk-80. Smalltalk 

also inherited functional programming features from Lisp. 

Based on Simula 67 and C, a language called “C with classes” was developed by Bjarne Stroustrup in 1980 

at Bell Labs, and then revised and renamed as C++ in 1983. C++ was considered a better C (e.g., with 

strong type checking), plus it supported data abstraction and object-oriented programming inherited from 

Simula 67. 
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Python was created by Guido van Rossum, and the first version was released in 1991. van Rossum studied 

and received a master’s degree in mathematics and computer science from the University of Amsterdam in 

1982, during which he learned multiple programming languages including Pascal, Fortran, and C. While 

working at the Centrum Wiskunde & Informatica (CWI), van Rossum helped develop the ABC 

programming language. The development of Python was influenced in many aspects by ABC, Pascal, 

Fortran, C, and C++ languages. 

Java was written by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at Sun 

Microsystems. It was called Oak at first and then renamed Java when it was publicly announced in 1995. 

The predecessors of Java were C++ and Smalltalk. Java removed most non-object-oriented features of C++ 

and was a simpler and better object-oriented programming language. Its two-level program processing 

concept (i.e., compilation into an intermediate bytecode and then interpretation of the bytecode using a 

small virtual machine) made it the dominant language for programming Internet applications. Java was still 

not a pure object-oriented programming language. Its primitive types, integer, floating-point number, 

Boolean, etc., were not classes, and their memory allocations were from the language stack rather than from 

the language heap. 

Microsoft’s C# language was first announced in June 2000. The language was derived from C++ and Java. 

It was implemented as a full object-oriented language without “primitive” types. C# also emphasizes 

component-oriented programming, which is a refined version of object-oriented programming. The idea is 

to be able to assemble software systems from prefabricated components. 

Functional programming languages are relatively independent of the development process of imperative 

and object-oriented programming languages. The first and most important functional programming 

language, Lisp, short for LISt Processing, was developed by John McCarthy at MIT. Lisp was first released 

in 1958. Then Lisp 1 appeared in 1959, Lisp 1.5 in 1962, and Lisp 2 in 1966. Lisp was developed 

specifically for artificial intelligence applications and was based on the lambda calculus. It inherited its 

algebraic syntax from Fortran and its symbol manipulation from the Information Processing Language, or 

IPL. Several dialects of Lisp were designed later, for example, Scheme, InterLisp, FranzLisp, MacLisp, and 

ZetaLisp. 

As a Lisp dialect, Scheme was first developed by G. L. Steele and G. J. Sussman in 1975 at MIT. Several 

important improvements were made in its later versions, including better scope rule, procedures (functions) 

as the first-class objects, removal of loops, and sole reliance on recursive procedure calls to express loops. 

Scheme was standardized by the IEEE in 1989. 

Efforts began on developing a common dialect of Lisp, referred to as Common Lisp, in 1981. Common 

Lisp was intended to be compatible with all existing versions of Lisp dialects and to create a huge 

commercial product. However, the attempt to merge Scheme into Lisp failed, and Scheme remains an 

independent Lisp dialect today. Common Lisp was standardized by the IEEE in 1992. 

Other than Lisp, John Backus’s FP language also belongs to the first functional programming languages. 

FP was not based on the lambda calculus, but based on a few rules for combining function forms. Backus 

felt that lambda calculus’s expressiveness on computable functions was much broader than necessary. A 

simplified rule set could do a better job. 

At the same time that FP was developed in the United States, ML (Meta Language) appeared in the United 

Kingdom. Like Lisp, ML was based on lambda calculus. However, Lisp was not typed (no variable needs 

to be declared), while ML was strongly typed, although users did not have to declare variables that could 

be inferentially determined by the compiler. 
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Miranda is a pure functional programming language developed by David Turner at the University of Kent 

in 1985–1986. Miranda achieves referential transparency (side effect-free) by forbidding modification to 

global variables. It combines the main features of SASL (St. Andrews Static Language) and KRC (Kent 

Recursive Calculator) with strong typing similar to that of ML. SASL and KRC are two earlier functional 

programming languages designed by Turner at the University of St Andrews in 1976 and at the University 

of Kent in 1981, respectively. 

There are many logic-based programming languages in existence. For example, ALF (Algebraic Logic 

Functional language) is an integrated functional and logic language based on Horn clauses for logic 

programming, and functions and equations for functional programming. Gödel is a strongly typed logic 

programming language. The type system is based on a many-sorted logic with parametric polymorphism. 

RELFUN extends Horn logic by using higher-order syntax, first-class finite domains, and expressions of 

nondeterministic, nonground functions, explicitly distinguished from structures. 

The most significant member in the family of logic programming languages is the Horn logic-based 

Prolog. Prolog was invented by Alain Colmerauer and Philippe Roussel at the University of Aix-Marseille 

in 1971. The first version was implemented in 1972 using Algol. Prolog was designed originally for natural-

language processing, but it has become one of the most widely used languages for artificial intelligence. 

Many implementations appeared after the original work. Early implementations included C-Prolog, 

ESLPDPRO, Frolic, LM-Prolog, Open Prolog, SB-Prolog, and UPMAIL Tricia Prolog. Today, the 

common Prologs in use are AMZI Prolog, GNU Prolog, LPA Prolog, Quintus Prolog, SICSTUS Prolog, 

SNI Prolog, and SWI-Prolog. 

Distributed computing involves computation executed on more than one logical or physical processor or 

computer. These units cooperate and communicate with each other to complete an integral application. The 

computation units can be functions (methods) in the component, components, or application programs. The 

main issues to be addressed in the distributed computing paradigms are concurrency, concurrent computing, 

resource sharing, synchronization, messaging, and communication among distributed units. Different levels 

of distribution lead to different variations. Multithreading is a common distributed computing technique 

that allows different functions in the same software to be executed concurrently. If the distributed units are 

at the object level, this is distributed OO computing. Some well-known distributed OO computing 

frameworks are CORBA (Common Object Request Broker Architecture) developed by OMG (Object 

Management Group) and Distributed Component Object Model (DCOM) developed Microsoft. 

Service-oriented computing (SOC) is another distributed computing paradigm. SOC differs from 

distributed OO computing in several ways: 

 SOC emphasizes distributed services (with possibly service data) rather than distributed objects; 

 SOC explicitly separates development duties and software into service provision, service 

brokerage, and application building through service consumption; 

 SOC supports reusable services in (public or private) repositories for matching, discovery and 

(remote or local) access; 

 In SOC, services communicate through open standards and protocols that are platform independent 

and vendor independent. 

It is worthwhile noting that many languages belong to multiple computing paradigms; for example, C++ is 

an OO programming language. However, C++ also includes almost every feature of C. Thus, C++ is also 

an imperative programming language, and we can use C++ to write C programs.  
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Java is more an OO language, that is, the design of the language puts more emphasis on the object 

orientation. However, it still includes many imperative features; for example, Java’s primitive type 

variables use value semantics and do not obtain memory from the language heap.  

Service-oriented computing is based on the object-oriented computing. The main programming languages 

in service-oriented computing, including Java and C#, can be used for object-oriented software 

development. 

The latest development in programming languages is the visual/graphic programming. MIT App Inventor 

(http://appinventor.mit.edu/) uses drag-and-drop style puzzles to construct phone applications in Android 

platform. Carnegie Mellon’s Alice (http://www.alice.org/) is a 3D game and movie development 

environment on desktop computers. It uses a drop-down list for users to select the available functions in a 

stepwise manner. App Inventor and Alice allow novice programmers to develop complex applications using 

visual composition at the workflow level. Intel’s IoT Service Orchestration Layer is a workflow language 

that allows quick development of IoT (Internet of Things) applications on Intel’s IoT platforms, such as 

Edison and Galileo (http://01org.github.io/intel-iot-services-orchestration-layer/). 

Microsoft Robotics Developer Studio (MRDS) and Visual Programming Language (VPL) are specifically 

developed for robotics applications (https://en.wikipedia.org/wiki/Microsoft_Robotics_Developer_ 

Studio). They are milestones in software engineering, robotics, and computer science education from many 

aspects. MRDS VPL is service-oriented; it is visual and workflow-based; it is event-driven; it supports 

parallel computing; and it is a great educational tool that is simple to learn and yet powerful and expressive. 

Unfortunately, Microsoft stopped its development and support to MRDS VPL in 2014, which lead to many 

schools’ courses, including ASU FSE100 course, using VPL without further support.  

To keep ASU course running and also help the other schools, Dr. Yinong Chen, Gennaro De Luca, and the 

development team at ASU IoT and Robotics Education Laboratory took the challenge and the responsibility 

to develop a new visual programming environment at Arizona State University in 2015: ASU VIPLE, 

standing for Visual IoT/Robotics Programming Language Environment. It is designed to support as many 

features and functionalities that MRDS VPL supports as possible, in order to better serve the MRDS VPL 

community in education and research. To serve this purpose, VIPLE also keeps similar user interface, so 

that the MRDS VPL development community can use VIPLE with little learning curve. VIPLE does not 

replace MRDS VPL. Instead, it extends MRDS VPL in its capacity in multiple aspects. It can connect to 

different physical robots, including LEGO EV3 and any robots based on the open architecture processors. 

ASU VIPLE software and documents are free and can be downloaded at: http:// 

neptune.fulton.ad.asu.edu/WSRepository/VIPLE/ 

1.2 Structures of programming languages 

This section studies the structures of programming languages in terms of four structural layers: lexical, 

syntactic, contextual, and semantic. 

1.2.1 Lexical structure 

Lexical structure defines the vocabulary of a language. Lexical units are considered the building blocks 

of programming languages. The lexical structures of all programming languages are similar and normally 

include the following kinds of units: 

 Identifiers: Names that can be chosen by programmers to represent objects like variables, labels, 

procedures, and functions. Most programming languages require that an identifier start with an 

alphabetical letter and can be optionally followed by letters, digits, and some special characters. 
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 Keywords: Names reserved by the language designer and used to form the syntactic structure of 

the language. 

 Operators: Symbols used to represent the operations. All general-purpose programming languages 

should provide certain minimum operators such as mathematical operators like +, −, *, /, relational 

operators like <, , ==, >, , and logic operators like AND, OR, NOT, etc. 

 Separators: Symbols used to separate lexical or syntactic units of the language. Space, comma, 

colon, semicolon, and parentheses are used as separators. 

 Literals: Values that can be assigned to variables of different types. For example, integer-type 

literals are integer numbers, character-type literals are any character from the character set of the 

language, and string-type literals are any string of characters. 

 Comments: Any explanatory text embedded in the program. Comments start with a specific 

keyword or separator. When the compiler translates a program into machine code, all comments 

will be ignored. 

 Layout and spacing: Some languages are of free format such as C, C++, and Java. They use braces 

and parentheses for defining code blocks and separations. Additional whitespace characters 

(spaces, newlines, carriage returns, and tabs) will be ignored. Some languages consider layout and 

whitespace characters as lexical symbols. For example, Python does not use braces for defining the 

block of code. It uses indentation instead. Different whitespace characters are considered different 

lexical symbols. 

1.2.2 Syntactic structure 

Syntactic structure defines the grammar of forming sentences or statements using the lexical units. An 

imperative programming language normally offers the following basic kinds of statements: 

 Assignments: An assignment statement assigns a literal value or an expression to a variable. 

 Conditional statements: A conditional statement tests a condition and branches to a certain 

statement based on the test result (true or false). Typical conditional statements are if-then, if-then-

else, and switch (case). 

 Loop statements: A loop statement tests a condition and enters the body of the loop or exits the 

loop based on the test result (true or false). Typical loop statements are for-loop and while-loop. 

The formal definition of lexical and syntactic structures will be discussed in Sections 1.2.6 and 1.2.7. 

1.2.3 Contextual structure 

Contextual structure (also called static semantics) defines the program semantics before dynamic 

execution. It includes variable declaration, initialization, and type checking. 

Some imperative languages require that all variables be initialized when they are declared at the contextual 

layer, while other languages do not require variables to be initialized when they are declared, as long as the 

variables are initialized before their values are used. This means that initialization can be done either at the 

contextual layer or at the semantic layer. 

Contextual structure starts to deal with the meaning of the program. A statement that is lexically correct 

may not be contextually correct. For example: 

String str = "hello"; 

int i = 0, j; 

j = i + str; 
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The declaration and the assignment statements are lexically and syntactically correct, but the assignment 

statement is contextually incorrect because it does not make sense to add an integer variable to a string 

variable. More about data type, type checking, and type equivalence will be discussed in Section 1.3. 

1.2.4 Semantic structure 

Semantic structure describes the meaning of a program, or what the program does during the execution. 

The semantics of a language are often very complex. In most imperative languages, there is no formal 

definition of semantic structure. Informal descriptions are normally used to explain what each statement 

does. The semantic structures of functional and logic programming languages are normally defined based 

on the mathematical and logical foundation on which the languages are based. For example, the meanings 

of Scheme procedures are the same as the meanings of the lambda expressions in lambda calculus on which 

Scheme is based, and the meanings of Prolog clauses are the same as the meanings of the clauses in Horn 

logic on which Prolog is based. 

1.2.5 Error types at different levels 

Programming errors can occur at all levels of a program. We call these errors lexical errors, syntactic errors, 

contextual errors, and semantic errors, respectively, depending on the levels where the errors occur. 

Lexical errors: Errors at the lexical level. Compiler can detect all the lexical errors. For example: 

int if = 0, 3var = 3; double IsTrue? = 0; 

These declarations will cause compilation errors in C, because “if” is a keyword, a variable cannot start 

with a number, and “?” cannot be used in variable definition. 

Syntactic errors: Errors at the syntactic level. Compiler can detect all of them. For example: 

main(){ 

 int x = 0, y = 3; double z = 0; 

 if x == 1, y++; // syntax error: condition must be quoted by parentheses 

 z = x+y    // missing semicolon 

} 

There are a number of syntactic errors in C in this piece of code: 

 The condition if-statement must be quoted by parentheses. 

 No comma between the condition and the following statement. 

 A semicolon is missing at the end of z = x+y statement. 

The definition of lexical and syntactic structures will be discussed in the following sections. 

Contextual errors: Errors at the contextual level. Contextual errors are complex and compiler 

implementations may or may not detect all of the initialization errors, depending on whether they actually 

compute the initialization expression or not. They include all the errors (excluding the lexical errors) in 

 variable declaration,  

 variable initialization, and  

 type inconsistent in assignment.  

The following are examples of contextual errors:  

int x = 5/(3+2); // contextual error that compiler may not detect 

x = "hello";  // type inconsistent in assignment 
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Semantic errors: Errors at the semantic level. They include all the errors in the statements that will be 

executed after passing compilation. The compiler normally does not detect semantic errors. For example: 

int x, y = 5; 

x = y/(3+2); // semantic error 

Figure 1.1 shows several contextual and semantic errors with similar but different types of errors that the 

compilers may handle differently.  

 

Figure 1.1. Examples of contextual errors and semantic errors. 

In Figure 1.1 (a), there is a clear semantic error. The code will pass all compilers but will cause an exception 

at execution.  

In Figure 1.1 (b), there is a contextual error in initialization. Since the initialization expression is quite 

complex, both GCC and Visual Studio will not detect the error because they choose to compile the 

initialization statement as an execution statement in the form shown in Figure 1.1 (c). Therefore, the 

contextual error in initialization will be delayed to the execution stage. We still call such errors contextual 

errors because the compiler’s choice of implementation should not impact the definitions of error types.  

In Figure 1.1 (c), the initialization statement is written as an execution statement, and, thus, the error 

changes from contextual error to semantic error. 

Semantic error 

when executing

Contextual error

in initialization

Contextual error

in initialization

Semantic error 

when executing

Declaration

ExecutionExecution

(a) No compilation error (b) GCC & VS pass compilation

(c) Error occurs when executing
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Figure 1.1 (d) has a clearly semantic error that will not be detected by any compilers, even though the 

expression is simple and straightforward, showing a division zero situation. 

Now, we move the execution statement in Figure 1.1 (d) to the declaration part in Figure 1.1 (e). It now 

will be a contextual error. This example shows a situation where different compilers will handle it 

differently. Visual Studio will throw a compiler error, whereas GCC will pass the code. Although GCC 

gives a warning of division by zero, it still generates executable. 

1.2.6 BNF notation 

BNF (Backus-Naur Form) is a meta language that can be used to define the lexical and syntactic structures 

of another language. Instead of learning BNF language first and then using BNF to define a new language, 

we will first use BNF to define a simplified English language that we are familiar with, and then we will 

learn BNF from the definition itself. 

A simple English sentence consists of a subject, a verb, and an object. The subject, in turn, consists of 

possibly one or more adjectives followed by a noun. The object has the same grammatical structure. The 

verbs and adjectives must come from the vocabulary. Formally, we can define a simple English sentence 

as follows: 

<sentence> ::= <subject><verb><object> 

<subject> ::= <noun> | <article><noun> | <adjective><noun> | 

   <article><adjective><noun> 

<adjective> ::= <adjective> | <adjective><adjective> 

<object> ::= <subject> 

<noun> ::= table | horse | computer 

<article> ::= the | a 

<adjective> ::= big | fast | good | high 

<verb> ::= is | makes 

In the definitions, the symbol “::=” means that the name on the left-hand side is defined by the expression 

on the right-hand side. The name in a pair of angle brackets “<>” is nonterminal, which means that the 

name needs to be further defined. The vertical bar “|” represents an “or” relation. The boldfaced names are 

terminal, which means that the names need not be further defined. They form the vocabulary of the 

language. 

We can use the sentence definition to check whether the following sentences are syntactically correct. 

fast high big computer is good table   1 

the high table is a good table    2 

a fast table makes the high horse    3 

the fast big high computer is good   4 

good table is high       5 

a table is not a horse      6 

is fast computer good      7 

The first sentence is syntactically correct, although it does not make much sense. Three adjectives in the 

sentence are correct because the definition of an adjective recursively allows any number of adjectives to 

be used in the subject and the object of a sentence. The second and third sentences are also syntactically 

correct according to the definition. 
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The fourth and fifth sentences are syntactically incorrect because a noun is missing in the object of the 

sentences. The sixth sentence is incorrect because “not” is not a terminal. The last sentence is incorrect 

because the definition does not allow a sentence to start with a verb. 

After we have a basic understanding of BNF, we can use it to define a small programming language. The 

first five lines define the lexical structure, and the rest defines the syntactic structure of the language. 

<letter> ::=  a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 

<digit> ::=  0|1|2|3|4|5|6|7|8|9 

<symbol> ::=  _|@|.|~|?|#|$ 

<char>  ::=  <letter>|<digit>|<symbol> 

<operator> ::=  +|−|*|/|%|<|>|==|<=|>=|and|or|not 

<identifier> ::=  <letter>|<identifier><char> 

<number> ::=  <digit>|<number><digit> 

<item>  ::=  <identifier>|<number> 

<expression> ::= <item>|(<expression>)| 

        <expression><operator><expression> 

<branch> ::=  if <expr>then {<block>} | 

    if <expr>then {<block>}else {<block>} 

<switch> ::= switch<expr>{<sbody>} 

<sbody> ::= <cases> | <cases>; default :<block> 

<cases> ::= case<value>:<block> | <cases> ; case<value>:<block> 

<loop>  ::=  while <expr>do {<block>} 

<assignment> ::= <identifier>=<expression>; 

<statement> ::=  <assignment>|<branch>|<loop> 

<block> ::=  <statement>|<block>;<statement> 

Now we use the definition to check which of the following statements are syntactically correct. 

sum1 = 0;         1 

while sum1 <= 100 do {      2 

sum1 = sum1 + (a1 + a2) * (3b % 4*b); }   3 

if sum1 == 120 then 2sum − sum1 else sum2 + sum1;  4 

p4#rd_2 = ((1a + a2) * (b3 % b4)) / (c7 − c8);  5 

_foo.bar = (a1 + a2 − b3 − b4);     6 

(a1 / a2) = (c3 − c4);       7 

According to the BNF definition of the language, statements 1 and 2 are correct. Statements 3 and 4 are 

incorrect because 3b and 2sum are neither acceptable identifiers nor acceptable expressions. Statement 5 is 

incorrect. Statement 6 is incorrect because an identifier must start with a letter. Statement 7 is incorrect 

because the left-hand side of an assignment statement must be an identifier. 

1.2.7 Syntax graph 

BNF notation provides a concise way to define the lexical and syntactic structures of programming 

languages. However, BNF notations, especially the recursive definitions, are not always easy to understand. 

A graphic form, called a syntax graph, also known as railroad tracks, is often used to supplement the 

readability of BNF notation. For example, the identifier and the if-then-else statement corresponding to the 

BNF definitions can be defined using the syntax graphs in Figure 1.2. The syntax graph for the identifier 

requires that an identifier start with a letter, may exit with only one letter, or follow the loops to include any 
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number of letters, digits, or symbols. In other words, to check the legitimacy of an identifier, we need to 

travel through the syntax graph following the arrows and see whether we can find a path that matches the 

given identifier. For instance, we can verify that len_23 is a legitimate identifier as follows. We travel 

through the first <letter> once, travel through the second <letter> on the back track twice, travel 

through the <symbol> once, and finally travel through the <digit> twice, and then we exit the definition. 

On the other hand, if you try to verify that 23_len is a legitimate identifier, you will not be able to find a 

path to travel through the syntax graph. 

Using the if-then-else syntax graph in Figure 1.2, we can precisely verify whether a given statement is a 

legitimate if-then-else statement. The alternative route that bypasses the else branch signifies that the else 

branch is optional. Please note that the definition of the if-then-else statement here is not the same as the if-

then-else statement in C language. The syntax graph definitions of various C statements can be found in 

Chapter 2. 

 

Figure 1.2. Definition of identifier and if-then-else statement.  

As another example, Figure 1.3 shows the definitions of a set data structures, including the definitions of 

value, string, array, bool, number, and object. 

In syntax graphs, we use the same convention that terminals are in boldfaced text and nonterminals are 

enclosed in a pair of angle brackets. 
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Figure 1.3. Definitions of different data structures. 

1.3 Data types and type checking 

In this section, we examine data types, type equivalence, and type checking that is part of the contextual 

structure of a programming language. 

1.3.1 Data types and type equivalence 

A data type is defined by the set of primary values allowed and the operations defined on these values. A 

data type is used to declare variables (e.g., integer, real, array of integer, string, etc.). 

Type checking is the activity of ensuring that the data types of operands of an operator are legal or 

equivalent to the legal type. 

Now the question is, what types are equivalent? For example, are int and short types, and int and float types 

in C language equivalent? Are the following operations legal in C? 

 

int i = 3; short j = 5;float n, k = 3.0; 

n = i + j + k; 
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The answers to these questions are related to the type equivalence policy of programming languages. There 

are two major type equivalence policies: structural equivalence and name equivalence. If the structural 

equivalence policy is used, the two types are equivalent if they have the same set of values (data range) 

and the same operations. This policy follows the stored program concept and gives programmers the 

maximum flexibility to manipulate data. The stored program concept suggests that instruction and data 

are stored in computer memory as binary bit patterns and it is the programmer’s responsibility to interpret 

the meanings of the bit patterns. Algol 68, Pascal, and C are examples of languages that use structural 

equivalence policy. For example, in the following C code, a type salary and a type age are defined: 

typedef integer salary; 

typedef integer age; 

int i = 0; salary s = 60000; age a = 40; 

i = s + a; 

If structural equivalence policy is used, the statement “i = s + a;” is perfectly legal because all three 

variables belong to types that are structurally equivalent. Obviously, adding an age value to a salary value 

and putting it into an integer type variable normally does not make sense and most probably is a 

programming error. Structural equivalence policy assumes programmers know what they are doing. 

On the other hand, if name equivalence policy is used, two types are equivalent only if they have the same 

name. Since no programming language will normally allow two different data types to have the same name, 

this policy does not allow any variable of one type to be used in the place where a variable of another type 

is expected without explicit type conversion. If name equivalence policy is used, the statement “i = s + 

a;” is then illegal. 

Ada, C++, and Java are examples where the name equivalence policy is used. Name equivalence enforces 

a much stronger discipline and is generally considered a good way to ensure the correctness of a program. 

1.3.2 Type checking and type conversion 

Besides type equivalence, type-checking policy is another important characteristic of a programming 

language. We can vaguely differentiate strongly typed and weakly typed languages. In a (truly) strongly 

typed language: 

 every name in a program must be associated with a single type that is known at the compilation 

time; 

 name equivalence is used; and 

 every type inconsistency must be reported. 

C++ and Java are strongly typed languages. Functional programming languages are normally weakly typed 

because mathematical functions are not typed. However, ML is strongly typed, although users did not have 

to declare variables that could be inferentially determined by the compiler. 

On the other hand, in a weakly typed language: 

 not every name has to be associated with a single type at the compilation time; 

 structural equivalence is used; and 

 a variable of a subtype is acceptable, and implicit type conversion, called coercion, is allowed. 

Type T1 is considered the subtype of T2, if the set of data of T1 is a subset of data of T2 and the set of 

operations of T1 is a subset of operations of T2. For example, an integer type can be considered a subtype 

of floating-point type. C, Scheme, and Prolog are weakly typed programming languages. Typeless 

languages like BCPL are weakly typed. 
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If a data type is a subtype of another type, it does not mean that the two types have the equivalent or similar 

structure. For example, in a 32-bit computer, an integer number 3 is represented in a simple binary form, 

as shown in the upper part of Figure 1.4. On the other hand, a floating-point number is normally represented 

in a three-segment format (IEEE 754 Standard), with the leftmost bit representing the sign (positive or 

negative), the next 8 bits representing the exponent, and the remaining 23 bits representing the fraction of 

the number, as shown in the lower part of Figure 1.4. 

 

Figure 1.4. Integer and floating-point numbers have different internal structures. 

In a strongly typed programming language, you can still use different types of variables in a single 

expression. In this case, one has to do explicit type conversion. In C/C++, explicit type conversion is called 

typecasting: the destination type in parentheses is placed before the variable that has an incompatible type. 

In the following statement, explicit conversion is used to convert variable s of salary type and variable a 

of age type into int type: 

i = (int)s + (int)a; 

Strong type checking trades flexibility for reliability. It is generally considered a good policy and is used in 

most recent programming languages. 

1.3.3 Orthogonality 

The word orthogonality refers to the property of straight lines meeting at right angles or independent 

random variables. In programming languages, orthogonality refers to the property of being able to combine 

various language features systematically. According to the way the features are combined, we can 

distinguish three kinds of orthogonality: compositional, sort, and number orthogonality. 

Compositional orthogonality: If one member of the set of features S1 can be combined with one member 

of the set of features S2, then all members of S1 can be combined with all members of S2, as shown in Figure 

1.5. 

 

Figure 1.5. Compositional orthogonality. 

For example, assume that S1 is the set of different kinds of declarations: (1) plain, (2) initializing, and (3) 

constant. For example 

 (1) typex i; (2) typex i = 5; (3) const typex i = 5; 

Set S2 is data types: boolean, int, float, array. 

If the language is compositionally orthogonal, then we can freely combine these two sets of features in all 

possible ways: 
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 Plain boolean, plain int, plain float, plain array 

(1) boolean b; (2) int i; (3) float f; (4) array a[]; 

 Initializing boolean, initializing int, initializing float, and initializing array 

(1) boolean b = true; 

(2) int i = 5; 

(3) float f = 4.5; 

(4) array a[3] = {4, 6, 3}; 

 Constant boolean, constant int, constant float, constant array 

(1) const boolean b = true; 

(2) const int i = 5; 

(3) const float f = 7.5; 

(4) const array a[3] = {1, 2, 8}; 

Sort orthogonality: If one member of the set of features S1 can be combined with one member of the set 

of features S2, then this member of S1 can be combined with all members of S2, as shown in Figure 1.6. 

For example, if we know that int i is allowed (the combination plain-int), then, according to sort 

orthogonality, plain boolean, plain int, plain float, and plain array will be allowed, that is: 

(1) boolean b; 

(2) int i; 

(3) float f; 

(4) array a[]; 

 

Figure 1.6. Sort orthogonality 1. 

However, since sort orthogonality does not allow other members of S1 to combine with members of S2, we 

cannot conclude that initializing and constant declarations can be applied to the data types in S2. 

The sort orthogonality can be viewed from the other side. If one member of the set S1 can be combined with 

one member of the set S2, then all members in S1 can be combined with the members of S2, as shown in 

Figure 1.7. 

For example, if the plain declaration can be combined with the int type, we conclude that the plain, 

initializing, and constant declarations can be applied to the int type. 

 

Figure 1.7. Sort orthogonality 2. 
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For example, if we know that const array a is allowed (the combination constant and array), according 

to the sort orthogonality, then plain array, initializing array, and constant array will be allowed: 

(1) array a[]; 

(2) array a[3] = {1, 2, 8}; 

(3) const array a[3] = {1, 2, 8}; 

However, since the sort orthogonality does not allow other members of S2 to combine with members of S1, 

we cannot conclude that boolean, int, and float type can be declared in three different ways. 

Number orthogonality: If one member of the set of features S is allowed, then zero or multiple features of 

S are allowed. For example, if you can declare a variable in a particular place (in many languages, e.g., C++ 

and Java, you can put declarations anywhere in the program), you should be able to put zero (no declaration) 

or multiple declarations in that place. In a class definition, if you can define one member, you should be 

allowed to define zero or multiple members. 

1.4 Program processing and preprocessing 

This section discusses what preparations need to be done before the computer hardware can actually execute 

the programs written in a high-level programming language. Typical techniques used to do the preparation 

work are preprocessing, interpretation, and compilation. 

1.4.1 Interpretation and compilation 

Interpretation of a program is the direct execution of one statement at a time sequentially by the interpreter. 

Compilation, on the other hand, first translates all the statements of a program into assembly language 

code or machine code before any statement is executed. The compiler does not execute the program, and 

we need a separate loader to load the program to the execution environment (hardware or a runtime system 

that simulates hardware). A compiler allows program modules to be compiled separately. A linker can be 

used to combine the machine codes that were separately compiled into one machine code program before 

we load the program to the execution environment. Figure 1.8 shows typical processing phases of programs 

using compilation. 

 

Figure 1.8. Compilation-based program processing. 

The advantage of interpretation is that a separate program-processing phase (compilation) is saved in the 

program development cycle. This feature allows the program to be updated without stopping the system. 

The interpreter can immediately and accurately locate any errors. However, the execution speed with 

interpretation is slower than the execution of machine code after the compilation. It is also more difficult 

to interpret programs written in very high-level languages. 
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To make use of the advantages of both compilation and interpretation, Java offers a combined solution to 

program processing. As shown in Figure 1.9, Java source program is first translated by a compiler into an 

assembly language-like intermediate code, called bytecode. The bytecode is then interpreted by an 

interpreter called Java Virtual Machine (JVM). The advantage of using the intermediate code is that the 

compiler will be independent of the machine on which the program is executed. Thus, only a single compiler 

needs to be written for all Java programs running on any machine. Another advantage is that the bytecode 

is a low-level language that can be interpreted easily. It thus makes JVM small enough to be integrated into 

an Internet browser. In other words, Java bytecode programs can be transferred over the Internet and 

executed in the client’s browser. This ability makes Java the dominant language for Internet application 

development and implementation. 

 

Figure 1.9. Java processing environment. 

Microsoft’s Visual Studio extends the Java environment’s compilation and interpretation processing into a 

two-step compilation process. As shown in Figure 1.10, in the first translation step, a high-level language 

program is compiled or interpreted to a low-level language called intermediate language (IL). The IL is 

similar in appearance to an assembly language. Programs in IL are managed and executed by the common 

language runtime (CLR). Similar to Java’s bytecode, the purpose of IL is to make the CLR independent 

of the high-level programming languages. Compared to JVM, CLR has a richer type system, which makes 

it possible to support many different programming languages, rather than one language only as on JVM. 

On the basis of the type system, nearly any programming language, say X, can be easily integrated into the 

system. All we need to do is to write a compiler or interpreter that translates the programs of the X language 

into the IL. An IL program can be interpreted, and it can be translated to the machine code (instructions) of 

the processor on which the programs are executing. The translation job is done by a Just-In-Time (JIT) 

compiler embedded in CLR. The JIT compiler uses a strategy of compile-when-used, and it dynamically 

allocates blocks of memory for internal data structures when each method is first called. 

Unlike the Java environment, Visual Studio is language agnostic. Although C# is considered its flagship, 

Visual Studio is not designed for a specific language. Developers are open to use the common libraries and 

functionality of the environment while coding their high-level application in the language of their choice. 

1.4.2 Preprocessing: macro and inlining 

Many programming languages allow programmers to write macros or inline procedures that preserve the 

structure and readability of programs while retaining the efficiency. The purpose of program 

preprocessing is to support macros and inline procedures. The preprocessing phase is prior to the code 

translation to the assembly or machine code. The preprocessor is normally a part of the compiler. 
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Figure 1.10. Microsoft’s Visual Studio. Net programming environment. 

In different programming languages, macros can be defined in different ways. In Scheme, we can introduce 

a macro by simply adding a keyword macro in the head of a procedure definition. In C/C++, a macro is 

introduced by a construct, which is different from a procedure definition: 

#define name body 

The #define construct associates the code in the body part to the identifier name part. The body can be a 

simple expression or rather complex procedure-like code, where parameter passing is allowed. For example: 

#define MAXVAL 100 

#define QUADFN(a,b) a*a + b*b − 2*a*b 

... 

x = MAXVAL + QUADFN(5,16); 

y = MAXVAL − QUADFN(1,3); 

The last two statements will be replaced by the macro preprocessor as: 

x = 100 + 5*5 + 16*16 − 2*5*16; 

y = 100 − 1*1 + 3*3 − 2*1*3; 

where MAXVAL is replaced by 100 and QUADFN(5,16) is replaced by a*a + b*b − 2*a*b, with 

parameter passing: a is given the value 5 and b is given the value 16, and a is given the value 1 and b is 

given the value 3, in the two statements, respectively. 

Macros are more efficient than procedure calls because the body part of the macro is copied into the 

statement where the macro is called. No control flow change is necessary. This process is also called 

inlining. On the other hand, if the macro is implemented as a procedure/function: 

#define MAXVAL 100 

int QUADFN(a,b) {return a*a + b*b − 2*a*b;} 

... 

x = MAXVAL + QUADFN(5,16); 

y = MAXVAL − QUADFN(1,3); 

a procedure will cause a control flow change that usually needs to save the processor environment, including 

registers and the program counter (return address), onto the stack. This process sometimes is called out-

lining. Obviously, inlining is much more efficient than out-lining. 

Macro preprocessing is a very simple and straightforward substitution of the macro body for the macro 

name. It is the programmer’s responsibility to make sure that such a simple substitution will produce the 
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correct code. A slight overlook could lead to a programming error. For example, if we want to define a 

macro to obtain the absolute value of a variable, we write the following macro in C: 

#define abs(a) ((a<0) ? −a : a) 

where the C statement ((a<0) ? −a : a) returns −a if a<0; otherwise, it returns a. 

This macro definition of the absolute-value function looks correct, but it is not. For example, if we call the 

macro in the following statement: 

j = abs(2+5); // we expect 7 to be assigned to j. 

The statement does produce a correct result. However, if we call the macro in the following statement: 

j = abs(2−5); // we expect +3 to be assigned to j. 

The statement will produce an incorrect result. The reason is that the macro-processor will replace 

“abs(2−5)” by “((a<0) ? −a : a)” and then replace the parameter “a” by “2−5”, resulting in the 

statement: 

j = ((2−5 < 0) ? −2−5 : 2−5); 

Since (2−5 < 0) is true, this statement will produce the result of −2−5 = −7, which is assigned to the 

variable j. Obviously, this result is incorrect, because we expect +3 to be assigned to j. 

Examine a further example. If we write a statement: 

j = abs(−2−5); 

The macro-processor will replace “abs(−2−5)” by “((a<0) ? −a : a)” and then replace the parameter 

“a” by “−2−5,” resulting in the statement: 

j = ((−2−5 < 0) ? −−2−5 : −2−5); 

The “−−2” in the preprocessed statement may result in a compiler error. 

The problem in this abs(a) macro is that we expect the expression that replaces a to be a unit. All 

operations within the unit should be done before −a is performed. This is the case when we write a function 

or procedure. However, the macro replacement does not guarantee this order of operation, and the 

programmer must understand the difference. A correct version of the abs(a) macro is: 

#define abs(a) ((a<0) ? −(a) : a)  // correct version of abs(a) macro 

Putting the “a” in a pair of parentheses guarantees that the operations within a are completed before −a is 

performed. 

Owing to the nature of simple textual replacement, a macro may cause side effects. A side effect is an 

unexpected or unwanted modification of a state. When we use a global variable to pass values between the 

caller procedure and the called procedure, a modification of the global variable in the called procedure is a 

side effect. 

Next, examine the side effect in the correctly defined abs(a) macro discussed earlier. If we call the macro 

in the following code: 

i = 3; 

j = abs(++i); // we expect 4 to be assigned to j. 

According to the way a macro is preprocessed, the following code will be produced by the macro-processor: 

i = 3; 
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j = ((++i < 0) ? −(++i) : ++i); 

When the second statement is executed, variable i will be incremented twice. According to the definition 

of the expression ++i, variable i will be incremented every time before i is accessed. There is another 

similar expression in C/C++: i++, which increments variable i every time after i is accessed. Similarly, 

C/C++ have expressions −−i and i−−, etc. 

In the earlier statement, variable i will be accessed twice: first when we assess (++i < 0), and then the 

second ++i will be accessed after the condition is assessed as false. As a result, number 5, instead of 4, will 

be assigned to the variable j. 

Macros can be used to bring (inline) a piece of assembly language code into a high-level language program. 

For example: 

#define PORTIO __asm \ 

{     \ 

 __asm mov al, 2  \ 

 __asm mov dx, 0xD007  \ 

 __asm out al, dx  \ 

} 

The back slash \ means that there is no line break when performing macro replacement. When we make a 

macro call to PORTIO in the program, this macro call will be replaced by: 

__asm { __asm mov al, 2 __asm mov dx, 0xD007 __asm out al, dx } 

where __asm is the C/C++ keyword for assembly instructions. If the compiler is translating the program 

into assembly code, nothing needs to be done with a line that starts with __asm. If the compiler is translating 

the program into machine code, the compiler will call the assembler to translate this line into machine code. 

For the execution of macros, different runtimes (execution engines) may process the translated code 

indifferent order. As an example, we consider the following code, which has two pairs of functions and 

macros. 

/* Side effect, Macro versus Function */ 

#include <stdio.h> 

#pragma warning(disable : 4996) // comment out if not in Visual Studio 

#define mac1(a,b) a*a + b*b - 2*a*b 

#define mac2(a,b) a*a*a + b*b*b - 2*a*b 

int func1(int a, int b) { return (a*a + b*b - 2 * a*b); } 

int func2(int a, int b) { return (a*a*a + b*b*b - 2 * a*b); } 

main() { 

 int a, b, i, j, fncout, macout; 

 printf("Please enter two integers\n"); 

 scanf("%d%d", &a, &b); 

 i = a; 

 j = b; 

 fncout = func1(++i, ++j); 

 printf("i = %d\tj = %d\n", i, j); 

 i = a; 

 j = b; 
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 macout = mac1(++i, ++j); 

 printf("i = %d\tj = %d\n", i, j); 

 printf("fncout1 = %d\tmacout1 = %d\n\n", fncout, macout); 

 i = a; 

 j = b; 

 fncout = func2(++i, ++j); 

 printf("i = %d\tj = %d\n", i, j); 

 i = a; 

 j = b; 

 macout = mac2(++i, ++j); 

 printf("i = %d\tj = %d\n", i, j); 

 printf("fncout2 = %d\tmacout2 = %d\n", fncout, macout); 

} 

Each of the pairs, (mac1, func1) and (mac2, func2), is supposed to implement the same functionality and 

give the same output. If we run the code on Visual Studio, the outputs are as follows: 

Please enter two integers 

5 

6 

i = 6   j = 7 

i = 8   j = 9 

fncout1 = 1     macout1 = 1 

 

i = 6   j = 7 

i = 9   j = 10 

fncout2 = 475   macout2 = 1549 

How are these outputs generated? We will manually trace the execution as follows. After the macro 

replacement, the two macro calls will be replaced by the following statements, respectively: 

macout = mac1(++i, ++j); macout = ++i*++i + ++j*++j - 2*++i*++j; 

macout = mac2(++i, ++j); macout = ++i*++i*++i + ++j*++j*++j - 2*++i*++j; 

In Visual Studio, the order of execution is to apply to all the unary operations (++) first, in the order of their 

appearances, before doing any arithmetic calculations at all. 

For func1 and mac1, the calculations are done as follows, respectively: 

func1: 6*6 + 7*7 – 2*6*7 = 36 + 49 – 84 = 1 

mac1:  8*8 + 9*9 – 2*8*9 = 64 + 81 – 144 = 1 

In this example, func1 and mac1 happen to have generated the same result. This is pure coincidence. For 

func2 and mac2, the calculations are done as follows, respectively, which generated different results: 

func1: 6*6*6 + 7*7*7 – 2*6*7 = 216 + 343 – 84 = 475 

mac1:  9*9*9 + 10*10*10 – 2*9*10 = 729 + 1000 – 180 = 1549 

Now, we run the same code on GNU GCC. The following results are generated: 

5  
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6 

i = 6   j = 7 

i = 8   j = 9 

fncout1 = 1     macout1 = -31 

 

i = 6   j = 7 

i = 9   j = 10 

fncout2 = 475   macout2 = 788 

As can be observed, the function implementations generate the same results as that generated on Visual 

Studio. However, the outputs of the macros on GCC are completely different from that on Visual Studio. 

The reason is that GCC uses a different order of evaluations. Now we explain how macout1 = –31 and 

macout2 = 788 are generated. 

GCC calculates the unary operations for the operands of each operator in pair and makes the same variable 

in the operation to have the same value. 

For mac1: macout = ++i*++i + ++j*++j - 2*++i*++j; the macro is evaluated as follows: 

mac1:  7*7 + 8*8 – (2*8)*9 = 49 + 64 – 144 = -31 

where the value of the first pair of variables ++i is 7 and the value of the second pair of variables ++i is 8. 

Then, 2 and ++i will form a pair, resulting (2*8), and its result will form a pair with the last ++i, which 

obtains a value 9. 

For mac2: macout = ++i*++i*++i + ++j*++j*++j - 2*++i*++j; the macro is evaluated as follows: 

mac1:  (7*7)*8 + (8*8)*9 – (2*9)*10 = 392 + 576 – 180 = 788 

Notice that the macros generate different values when there exist side effects, for example, when ++i is 

used as the input. If no side effects are involved, the macros should generate the same results as their 

function implementations, and macros should generate the same results running different execution 

environments. 

This discussion shows that macros are similar to, and yet different from, procedures and functions, and that 

both writing macros (ensuring correctness) and using macros (understanding the possible side effects) can 

be difficult and challenging. Can we write and use macros (obtain better efficiency) exactly in the same 

way as we write and use procedures and functions (obtain the same simplicity)? Efforts have been made to 

do that, and we are making good progress. As mentioned earlier, in Scheme, we can write macros in the 

same way in which we write procedures. However, we still cannot use macros in exactly the same way we 

use procedures. This issue will be discussed in the chapter on Scheme programming (Chapter 4). In C++, 

“inline” procedures/functions are allowed. All that is needed is to add a keyword –inline (in C) and inline 

(in C++) in front of the definition of a procedure/function. For example: 

_inline int sum(int i, int j) { 

 return i + j; 

} 

However, the inline procedure/function is slightly different from a macro. A macro call will always be 

replaced by the body of the macro definition in the preprocessing stage. The macro-processor will not check 

the syntax and semantics of the definition. On the other hand, for an inline procedure/function call, the 

compiler (not the preprocessor) will try to replace the call by its body. There are two possibilities: If the 

procedure/function is simple enough, the compiler can do the replacement and can guarantee the correctness 

of the replacement; that is, the inlined code must work exactly in the same way as an ordinary 
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procedure/function call. If the body of the procedure is too complicated (e.g., uses many variables and 

complex expressions), the compiler will not perform inlining. The inline procedure in this case will work 

like an ordinary procedure. 

Java has a similar mechanism called final method. If a method is declared final, it cannot be overridden in 

a subclass. This is because a call to a final method may have been replaced by its body during compilation, 

and thus late binding cannot associate the call with a method redefined in a subclass. 

*1.5 Program development 

This section briefly introduces the main steps of the program development process, including requirement, 

specification, design, implementation, testing, proof, and related techniques. Understanding these steps and 

the related techniques involved is extremely important. However, a more detailed discussion of these topics 

is beyond the scope of this text. 

1.5.1 Program development process 

Development of a program normally goes through the following process: 

Requirement is an informal description, from the user’s point of view, of the functionality of the program 

to be developed. Normally, requirements are informal. For example, “I want the program to sort all numbers 

in an increasing order” is an informal requirement. 

Specification is a formal or semiformal description of the requirement from the developer’s point of view. 

The specification describes what needs to be done at the functionality level. A formal specification is 

defined by a set of preconditions on the inputs and a set of post conditions on the outputs. For example, a 

formal specification of “sorting numbers” can be defined as follows: 

Input: (x1, x2, ..., xn) 

Preconditions on inputs: 

(xi)(xi I), where I is the set of all integer numbers. 

Output: (xi1, xi2, ..., xin) 

 Postconditions on outputs: 

(xij)(xik) ((xij I  xij I  j < k)  xij xik). 

The design step translates what needs to be done (functional specification) into how to do it (procedural 

steps or algorithm). For example, devising a sorting algorithm to meet the specification belongs to the 

design step. An algorithm is usually written in a pseudo language that does not have the mechanical details 

of a programming language. A pseudo language focuses on clear and accurate communication with 

humans, instead of humans and machines. 

The implementation step actualizes or instantiates the design step using a real programming language. 

Writing programs in real programming languages is the main topic of this text and will be discussed in 

much more detail in the following chapters. 

The testing and correctness proof step tries to show that the implementation does the work defined in the 

design step or in the specification step. The development process has to return to the implementation or 

design steps if the implementation does not meet the requirements of the design or the specification. 
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The verification and validation step tries to show that the implementation meets the specification or the 

user’s requirements. The development has to return to design or specification steps if necessary. 

In fact, numerous refined phases and iterations within and between these steps can occur during the entire 

development cycle. 

1.5.2 Program testing 

In this and the next subsections, we present more details of the testing and correctness proof step, and 

related techniques in the program development process. 

A test case is a set of inputs to a program and the expected outputs that the program will produce if the 

program is correct and the set of inputs is applied to the program. We also use the input case to refer to the 

input part of a test case. Program testing is the process of executing a program by applying predesigned 

test cases with the intention of finding programming errors in a given environment. Testing is related to the 

environment. For example, assume that your program runs correctly on a GNU GCC C/C++ environment. 

If you move your program to a Visual Studio C/C++ environment, you need to retest your program because 

the environment has been changed. Debugging is the process of finding the locations and the causes of 

errors and fixing them. 

If a program has a limited number of possible inputs, we could choose all possible inputs as the test cases 

to test the program. This approach is called exhaustive testing. If the outputs are correct for all test cases, 

we have proved the program’s correctness. 

However, in many cases, a program can take an unlimited number of inputs, or the number of test cases is 

too big to conduct exhaustive testing. We have two ways to deal with the problem: use incomplete testing 

or use a formal method to prove the program’s correctness. 

If incomplete testing is used, the question is how we should choose (generate) the limited subset of test 

cases. Functional testing and structural testing are two major approaches used to generate incomplete test 

cases. In functional testing, we try to generate a subset of test cases that can cover (test) all functions or 

subfunctions of the program under test. Functional testing is also called black-box testing because we 

generate test cases without looking into the structure or source code of the program under test. In structural 

testing, we try to generate a subset of test cases that can cover (test) particular structures of the program 

under test. For example, we can try to cover all: 

 statements in the program, 

 branches of the control flow, or 

 paths from the program’s entry point to the program’s exit point. 

Structural testing is also called glass-box testing or white-box testing because it requires detailed 

knowledge of the control structure and the source code of the program under test. 

Both functional testing and structural testing can be considered so-called partition testing. Partition testing 

tries to divide the input domain of the program under test into different groups so that the inputs in the same 

group are equivalent in terms of their testing capacity. For example, if we are conducting functional testing, 

we can consider all inputs that will cause the same subfunction to be executed as a group. On the other 

hand, if we are conducting structural testing, we can consider all inputs that will cause the same program 

path to be executed as a group. Then, we choose: 

 one or several test cases from each group of inputs, and 

 one or several inputs on the boundaries between the groups 
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to test the program. For example, if an integer input is partitioned into two groups—negative and 

nonnegative—then zero is on the boundary and must be chosen as an input case. Obviously, if the partition 

is done properly, partition testing will have a fair coverage of all parts of the program under test. 

Program testing is a topic that can take an entire semester to study. We do not attempt to teach the complete 

program testing theory and practice in this section. In the rest of the section, we will use a simple example 

to illustrate some of the important concepts related to the topic. 

Example: The gcd function in the following C program is supposed to find the greatest common divisor of 

two nonnegative integers. 

#include <stdio.h> 

int gcd (int n0, int m0) { // n0 >= 0 and m0 >= 0 and (n0  0 or m0  0) 

 int n, m;       

 n = n0; 

 m = m0; 

 while (n != 0 && n != m) { // (n  0) AND (n  m) 

  if (n < m) 

   m = m − n; 

  else  

   n = n − m; 

 } 

 return m; 

} 

main() {  

 int i, j, k; 

 scanf("%d\n%d", &i, &j); // input integers i and j from the keyboard 

 k = gcd(i, j);    // call function gcd 

 printf("%d\n", k);   // output the greatest common divisor found 

} 

First, we “randomly” pick out the following test cases to test the program. 

Input (i, j)   Expected Output k Actual 

Output k  

  (6, 9)     3   3 

  (10, 5)     5   5 

  (0, 4)     4   4 

  (5, 7)     1   1 

  (8, 29)     1   1 

We find that the actual output equals the expected output in all these test cases. Now the question is, is this 

program correct? 

As we know, testing can never prove the correctness of a program unless all possible test cases have been 

used to test the program. However, a set of test cases that can cover different parts of the program can 

certainly increase the confidence of the correctness of the program. 
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Now we apply structural testing to generate systematically a better set of test cases. We assume that we aim 

at covering all the branches in the gcd function. To make sure we cover all branches, we first draw the 

function’s flowchart, as shown in Figure 1.11. A flowchart is an abstraction of a program that outlines the 

control flows of the program in a graphic form. In the flowchart in Figure 1.11, each branch is marked with 

a circled number. 

 

Figure 1.11. Flowchart of gcd function. 

To obtain a good coverage of the branches, we need to analyze the features of the input domain of the 

program. For the given program, the input domain has the following features: 

 The program takes two nonnegative integers as input. The boundary value is 0. 

 The branches of the program are controlled by the relative values of a pair of integers. We should 

consider choosing equal and unequal pairs of numbers. 

 The great common divisors are related to the divisibility of integers, or the prime and nonprime 

numbers. We should choose some prime numbers and some nonprime numbers. 

On the basis of the analysis, we can choose, for example, these values for both i and j: boundary value 0, 

two prime numbers 2 and 3, and two nonprime numbers 9 and 10. 

The combination of the two inputs generates the following input cases: 

(0, 0)  // This case is not allowed according to the precondition. 

(0, 2), (0, 3), (0, 9), (0, 10) 

(2, 0), (2 2), (2, 3), (2, 9), (2, 10) 

(3, 0), (3, 2), (3, 3), (3, 9), (3, 10) 

(9, 0), (9, 2), (9, 3), (9, 9), (9, 10) 

(10, 0), (10, 2), (10, 3), (10, 9), (10, 10) 

We can apply all these test cases to test the program. We can also reduce the number of test cases by 

partitioning the input cases into groups: two input cases belong to the same group if they cover the same 

branches in the same order. Table 1.2 lists the groups, a representative from each group, the expected output 

of the representative input case, and the branches covered by the groups. 

Groups partitioned Representative Expected gcd output Branches covered 

(0, 2),(0, 3),(0, 9),(0, 10) (0, 2) 2  

yes

yes

no

no

n < m?

m = m - n;

yes

no

return m;

n != 0?

n != m?

n = n - m;

return

gcd















 



yes

yes

no

no

n < m?

m = m - n;

yes

no

return m;

n != 0?

n != m?

n = n - m;

return

gcd















 


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(2 2),(3, 3), (9, 9),(10, 10)  (2 2) 2  

(2, 0),(3, 0), (9, 0),(10, 0) (2, 0) 2  

(2, 3),(2, 9), (3, 10), (9, 10) (2, 3) 1  

(2, 10), (3, 9) (2, 10) 2  

(3, 2),(9, 2), (10, 3),(10, 9) (3, 2) 1  

(9, 3), (10, 2) (9, 3) 3  

Table 1.2. Input case partitions and branch coverage. 

If we choose the representative input from each group and the expected output as the test cases, we obtain 

a test case set that can cover all the branches in the flowchart. Applying this set of test cases, we will find 

that the input case (2, 0) will not be able to produce the expected output. In fact, a dead-looping situation 

will occur. Thus, we successfully find that the program is incorrect. 

1.5.3 Correctness proof 

To prove the correctness of a program, we need to prove that, for all predefined inputs (inputs that meet 

the preconditions), the program produces correct outputs (outputs that meet the postconditions). 

Program proof consists of two steps: partial correctness and termination. A program is partially correct 

if an input that satisfies the preconditions is applied to the program, and if the program terminates, the 

output satisfies the postconditions. A program terminates if, for all inputs that meet the preconditions, the 

program stops in finite execution steps. A program is totally correct (total correctness) if the program is 

partially correct and the program terminates. 

The idea of partial correctness proof is to prove that any input that meets the preconditions at the program 

entry point will be processed, step by step through the statements between the entry point and the exit point, 

and the postconditions will be satisfied at the exit point. Obviously, if there is no loop in the program, it is 

not too hard to do the step-by-step proof. However, if there is a loop in the program, the step-by-step 

approach will not work. In this case, we need to use the loop invariant technique to derive the condition to 

be proved through the loop. A loop invariant is a condition that is true in each iteration of the loop. To 

prove a condition is a loop invariant, we can use mathematical induction: We prove that the condition is 

true when the control enters the loop for the first time (iteration 1). We assume that the condition is true at 

iteration k, and prove that the condition will be true at the iteration k+1. 

Finding the loop invariant that can lead to the postconditions is the most challenging task of the correctness 

proof. You must have a deep understanding of the problem in order to define a proper loop invariant. 

Proving the termination is easy if we design the loops following these guidelines. The loop variable: 

 is an enumerable variable (e.g., an integer); 

 has a lower bound (e.g., will be greater than or equal to zero); 

 will strictly decrease. Strictly decrease means that the value of the loop variable must be strictly 

less than the value of the variable in the previous iteration. The “<” relation is strict, while “” is 

not. 

If you do not follow the guidelines, you may have trouble proving the termination of even a simple program. 

In an exercise given at the end of the chapter, a very simple example is given where many inputs have been 

tried, and the program always stops. However, so far, nobody can prove that the program terminates for all 

inputs. 
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Now we will study a similar example that we used in the last section to illustrate the proof concepts that we 

discussed here. The program is given in a pseudo language. Since we do not actually have to execute the 

program, we do not have to give the program in a real programming language. 

gcd (n0, m0)  

// precondition: (n0 0  m0 0)  (n0 0  m0 0)  (n0, m0 are integer) 

 n = n0;     

 m = m0; 

 while n  0 do 

// loop invariant: (n  m  0)  (n  0  m  0)  

//     max{u: u|n and u|m} = max{u: u|n0 and u|m0} 

  if n  m 

  then  m = m − n 

  else swap(n, m) 

 output(m)  

// postconditions: m = max{u: u|n0 and u|m0} 

To prove the partial correctness, we need to prove, for any integer pair (n0, m0) that meets the 

preconditions, the loop invariant is true in every iteration of the loop. When the control completes all the 

iterations of the loop and reaches the exit point of the program, the postconditions will be true. As discussed, 

finding the loop invariant is the most difficult part. Now we are given the condition that should be a loop 

invariant, and we only need to prove that the condition is indeed a loop invariant. The given condition is: 

(n  m  0)  (n  0  m  0)  

max{u: u|n and u|m} = max{u: u|n0 and u|m0} 

We need to prove it is a loop invariant. We can use mathematical induction to prove it in the following 

steps: 

(1) Prove the condition is true at the iteration 1: it is obvious. 

(2) Assume the condition is true at iteration k. 

(3) Prove the condition is true at iteration k+1. 

Since the conversion made in each iteration is: 

gcd(n, m)  gcd(n, m − n), or 

gcd(n, m)  gcd(m, n)   

According to mathematical facts: 

  gcd(n, m) = gcd(n, m − n), and  

  gcd(n, m) = gcd(m, n)   

Thus, from iteration k to iteration k+1, the condition will remain to be true. Therefore, we have proved the 

condition is a loop invariant. 

We then need to prove that the loop invariant leads to the postconditions. It can be easily seen from the 

program that if the loop invariant is true when the control leaves the loop, the postconditions will indeed 

be true. Thus, we have proved the partial correctness of the program. 

To prove that the program terminates, we can use the following facts: 
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(1) The loop variable is (n, m). The loop variable is enumerable. 

(2) If we consider the dictionary order, that is: 

(n, m) > (n, m − n), if n  m  // e.g. (3, 6) > (3, 3) in dictionary order 

(n, m) > (m, n),  if n > m. // (6, 3) > (3, 6) in dictionary order 

we can see that there is a strictly decreasing order on the loop variable (n, m) based on the dictionary 

order. 

(3) There is a lower bound on the value that (n, m) can take, that is (0, 0). 

Since the loop variable (n, m) is enumerable, it decreases strictly, and there is a lower bound (0, 0); 

the loop must terminate. 

In an exercise given at the end of the chapter, a variation of the gcd program is suggested. Try to prove its 

partial correctness and its termination. 

1.6 Summary 

In this chapter, we introduced in Section 1.1 the concepts of the four major programming paradigms: 

imperative, object-oriented, functional, and logic. We looked at the impact of language features on the 

performance of the programs written in the language. We briefly discussed the development of languages 

and the relationships among different languages. We then discussed in Section 1.2 the structures of 

programs at four levels: lexical, syntactic, contextual, and semantic. We illustrated our discussion on the 

lexical and syntactic levels by introducing the BNF notation and syntax graph. We used BNF notation to 

define the lexical and syntactic structures of a simple programming language. In Section 1.3, we studied 

the important concepts in programming languages, including data types, type checking, type equivalence, 

and type conversion. Orthogonality was used to examine the regularity and simplicity of programming 

languages. Finally, in Section 1.4, we briefly discussed program processing via compilation, interpretation, 

and a combination of the two techniques. The emphasis was on the macro and inline procedures/functions 

in C/C++. We studied how to define and use macros, and what their strengths and weaknesses are when 

compared to ordinary procedures/functions. Section 1.5 outlined the program development process and 

discussed programming testing and proof techniques through examples. 
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1.7 Homework and programming exercises 

1. Multiple Choice. Choose only one answer for each question. Choose the best answer if more than 

one answer is acceptable. 

1.1 Stored Program Concept (von Neumann machine) is one of the most fundamental concepts in 

computer science. What programming paradigm most closely follows this concept? 

 imperative  object-oriented   functional  logic 

1.2 What computing paradigm can solve a problem by describing the requirements, without writing code 

in a step-wise fashion to solve the problem. 

 imperative  functional  object-oriented  logic 

1.3 What computing paradigm enforces stateless (no variable allowed) programming? 

 imperative  object-oriented  functional  service-oriented 

1.4 What is a feature of object-oriented computing? 

 stateless   state encapsulation  platform-independent  side-effect free 

1.5 In contrast to Web 1.0, what is the key function of Web 2.0? 

 Web is the computing platform  Web supports graphic display 

 Web supports semantic analysis  Web is accessed over HTTP protocol 

1.6 Because of hardware constraints, early programming languages emphasized 

 efficiency  orthogonality   reliability  readability 

1.7 What factor is generally considered more important in modern programming language design?  

  readability   writability   efficiency   None 

1.8 The main idea of structured programming is to 

 reduce the types of control structures.  increase the types of control structures. 

  make programs execute faster.  use BNF to define the syntactic structure. 

1.9 Implicit type conversion is commonly refer to as: 

  typing coercion casting paradigm 

1.10 In the following pseudo code, which programming language allows the mixed use of data types? 

int i = 1; char c = 'a';  // declaration and initialization  

c = c + i;    // execution of an assignment statement 

  Ada  C   Java  All of them 

1.11 In the layers of programming language structure, which layer performs type checking? 

  lexical   syntactic   contextual   semantic 

1.12 How many different identifiers can the following BNF ruleset generate? 

<char>        ::= a | b | c | ... | x | y | z 

<identifier>  ::= <char> | <char> <identifier> 

  0   1   26   more than 26 
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1.13 Which of the following statement is correct if a language is strongly typed.  Select all that apply. 

  Each variable in a program has a single type associated with it. 

  Variable type can be unknown at compilation time. 

  Type errors are always reported. 

  Coercion is automatically allowed. 

1.14 Which command (construct) has a loop when expressed in syntax graphs? 

  if-else   switch    for    while  

1.15 The contextual structure of a programming language defines 

  how to form lexical units from characters. 

  how to put lexical units together to form statements. 

  the static semantics that will be checked by the compiler. 

  the dynamic semantics of programs under execution. 

1.16 If a program contains an error that divides a number by zero at the execution time. This error is a 

  lexical error   syntactic error   contextual error     semantic error   

1.17 Interpretation is not efficient if 

 the source program is small. 

  the source program is written in an assembly language. 

  the difference between source and destination is small. 

 multi-module programming is used. 

1.18 What is the difference between an inline function and a macro in C++? 

  There is no difference between them. 

 The inline functions are for Java only. There are no inline functions in C++. 

 Inlining is a suggestion to the compiler, while a macro definition will be enforced. 

  A macro definition is a suggestion to the compiler, while inlining will be enforced. 

1.19 Macros-Processing takes place during which phase? 

  Editing  Preprocessing  Compilation  Execution 

1.20 Assume a function requires 20 lines of machine code and will be called 10 times in the main program. 

You can choose to implement it using a function definition or a macro definition. Compared with the 

function definition, macro definition will lead the compiler to generate, for the entire program, 

 a longer machine code but with shorter execution time. 

 shorter machine code but with longer execution time. 

 the same length of machine code, with shorter execution time. 

 the same length of machine code, with longer execution time. 

2. Compare and contrast the four programming paradigms: imperative, object-oriented, functional, and 

logic. 
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3. Use the library and Internet resources to compile a table of programming languages. The table must 

include all programming languages mentioned in Section 1.1.3 on the development of programming 

languages. The table should contain the following columns: 

 name of the programming language, 

 year the language was first announced, 

 authors/inventors of the language, 

 predecessor languages (e.g., C++ and Smalltalk are predecessors of Java), 

 programming paradigms (e.g., Java belongs to imperative and object-oriented programming 

paradigms). 

 The table should be sorted by year. 

4. What is strong type checking, and what are its advantages? List a few languages that use nearly 

strong type checking in their program compilations. 

5. What is weak type checking, and what are its advantages? List a few languages that use weak type 

checking in their program compilations. 

6. What is orthogonality? What are the differences between compositional, sort, and number 

orthogonality? 

7. Compare and contrast a macro and an inline function in C++. Which one is more efficient in 

execution time? Which one is easier for programmers to write? 

8. Compare and contrast the C++ inline function and Java’s final method. 

9. Which type equivalence leads to strong type checking, structural equivalence, or name equivalence? 

Explain your answer. 

10. Use BNF notation to define a small programming language that includes the definition of variable, 

math-operator, math-expression, condition-operator, condition-expression, assignment statement, 

loop statement, switch statement, and a block of statements. A variable must start and end with a 

letter (an unusual requirement). A single letter is a valid variable. The definition of the expression 

must be able to handle nested expressions like 2*(x + y) and 5*((u + v)*(x − y)). The 

language must include the following statements: 

 Assignment: It assigns (the value of) a variable or an expression to a variable. For example, x = 

2*(y + z). 

 Conditional: if-then and if-then-else. The condition in the statement can be simply defined 

as an expression. 

 For-loop: For example, for (i = 0; i <10; i=i+1){a block of statements} 

 Switch: It must have an unlimited number of cases. 

 Statement: A statement can be an assignment, conditional, for-loop, or switch statement. 
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 Block: One statement is a block. Zero or multiple statements in curly braces and separated by “;” is 

also a block, according to number orthogonality. For example, i=i+2; is a block. {i=i+2; for 

(k=0; k<i; k=k+1) {i=i+1; s=2*i}} is also a block. 

11. The following syntax graph defines the identifiers of a programming language, where alpha is the 

set of characters “a” through “z” and “A” through “Z,” digit is the set of characters “0” through “9,” 

and underscore is the character “_.” 

 

11.1 Which of the following strings can be accepted by the syntax graph (choose all correct answers)?  

  _FooBar25_  2_5fooBar_   Foo&Bar   12.5  Foo2bar 

11.2 Give the syntax graph that defines the identifiers always starting with a letter from the set alpha.  

11.3 Give the BNF definition equivalent to the syntax graph of the question above. 

12. Given the C program below, answer the following questions. 

#define min1(x,y) ((x < y) ? x : y) 

#define min 10 

#include <stdio.h> 

int min2(int x, int y) { 

 if (x < y) return x; 

 else return y; 

} 

main() { 

 int a, b; 

 scanf("%d %d", &a, &b);    

 if (b < min)      

  printf("input out of range\n"); 

 else { 

  a = min1(a, b++);  

  printf("a = %d, b = %d\n", a, b); 

  a = min2(a, b++); 

  printf("a = %d, b = %d\n", a, b); 

 } 

} 

12.1 Give the exact C code of the statement “a = min1(a, b++);” after macro processing. 

12.2 Give the exact C code of the statement “a = min2(a, b++);” after macro processing. 

12.3 Give the exact C code of the statement “if (b < min)” after macro processing. 

12.4 Assume 60 and −30 are entered as inputs. What is the exact output of the program? 

alpha

digit

underscore

alpha

digit

underscore
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12.5 Assume 50 and 30 are entered as inputs. What is the exact output of the program? 

13. Assume a programming language has two sets of features. S1 is the set of three different kinds of 

declarations: (1) plain, (2) initializing, and (3) constant. That is, 

 (1) typex i; (2) typex i = 5; (3) const typex i = 5;S2 is the set of data types: (a) bool, 

(b) int, (c) float, (d) array, (e) char. 

13.1 If the language guarantees sort orthogonality 1 in Figure 1.6, and we know that int i is allowed 

(the combination plain-int), list the allowed combinations of the features of the two sets that can be 

implied by the sort orthogonality. 

13.2 If the language guarantees sort orthogonality in Figure 1.7, and we know that const array a is 

allowed (the combination constant-array), list the allowed combinations of the features of the two 

sets that can be implied by the sort orthogonality. 

13.3 If the language guarantees compositional orthogonality, list the combinations of the two sets of 

features allowed. Write a simple C program that exercises all the declarations in this question. Each 

declared variable must be used at least once in the program. The purpose of the program is to test 

whether C supports compositional orthogonality. The program thus does not have to be semantically 

meaningful. Test the program on Visual Studio or GNU GCC, and submit a syntax error-free 

program. Note: a variable can be declared only once. You must use different variable names in the 

declarations.  

14. Programming exercise. 

 You are given the following simple C program. 

/* assign1.c is the file name of the program. */ 

#include <stdio.h>  // use C style I/O library function 

main () {    // main function 

 int i = 0, j = 0; // initialization 

 printf("Please enter a 5-digit integer \n"); 

 scanf("%d", &i);  // input an integer  

 i = i % 10000;  // modulo operation  

 printf("Please repeat the number you entered\n");  

 scanf("%d", &j); // input an integer  

 j = j % 10000;  // modulo operation  

 if (i == j)   // conditional statement  

  printf("The number you entered is %d\n", i);  

 else     // else branch   

  printf("The numbers you entered are different\n"); 

}  

14.1 Enter the program in a development environment (e.g., Visual C++ or GNU GCC). Save the file as 

assign1.c. If you are not familiar with any programming environment, please read Section B.2 of 

Appendix B. 

14.2 Compile and execute the program. 
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14.3 Read Chapter 2, Section 2.1. Modify the given program. Change <stdio.h> to <iostream>. 

Change printf to cout and change scanf to cin, etc. Save the file as assign1.cpp 

14.4 Compile and execute the program. 

15. Macros are available in most high-level programming languages. The body of a macro is simply used 

to replace a macro call during the preprocessing stage in compilation. A macro introduces an “inline” 

function that is normally more efficient than an “out-line” function. However, macros suffer from 

side effects, unwanted or unexpected modifications of variables. Macros should be used cautiously. 

The main purpose of the following program is to demonstrate the differences between a function and 

a macro. Other purposes include learning different ways of writing comments, formatted input and 

output, variable declaration and initialization, unary operation ++, macro definition/call, function 

definition/call, if-then-else and loop structures, etc. Study the following program carefully and 

answer the following questions. 

/* The purpose of this program is to compare and contrast a function 

 to a macro. It shows the side effects of a macro and an incorrect 

 definition of a macro. The macros/functions abs1(x), abs2(x), and 

 abs3(x) are supposed to return the absolute value of x.  */ 

#define abs1(a) ((a<0) ? −(a) : (a)) // macro definition 

#define abs2(a) ((a<0) ? −a : a)  // macro definition 

#include <stdio.h> 

int abs3(int a) {      // function definition 

 return ((a<0) ? −(a) : (a));  // --> if(a < 0) return −a else return 

a; 

} 

main() { 

 int i1 = 0, i2 = 0, i3 = 0, j1 = 0, j2 = 0, j3 = 0; 

 printf("Please enter 3 integers\n"); 

 scanf("%d %d %d", &i1, &i2, &i3); 

 while (i1 != 123) {  // 123 is used as sentinel 

  j1 = abs1(++i1 − 2); // call a macro 

  j2 = abs2(++i2 − 2);  // call a macro 

  j3 = abs3(++i3 − 2);  // call a function 

  printf("j1 = %d, j2 = %d, j3 = %d\n", j1, j2, j3); 

  printf("Please enter 3 integers\n"); 

  scanf("%d %d %d", &i1, &i2, &i3); 

 } 

} 

15.1 Desk check (manually trace) the program. What would be the outputs of the program when the 

following sets of inputs are applied to the program? 

i1, i2, i3 = 9, 9, 9 j1, j2, j3 = 

i1, i2, i3 = −5, −5, −5  j1, j2, j3 = 

i1, i2, i3 = 0, 0, 0  j1, j2, j3 = 

15.2 Enter the program into a programming environment and execute the program using the inputs given 

in the previous question. What are the outputs of the program? 
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15.3 Explain the side effects that occurred in the program. 

15.4 Which macro is incorrectly defined? Explain your answer. 

15.5 Change the macros in the program into inline functions. 

16. Consider the gcd program in Section 1.5.3. What would happen if the else-branch swap(n, m) in 

the program were changed to n = n − m? 

16.1 Can we still prove the partial correctness? 

16.2 Can we prove the termination? 

16.3 Write a C program to implement the original algorithm and find a set of test cases to test your 

program. The test case set must cover the branches of the program. 

17. Given the following algorithm in pseudo code: 

termination(n) // precondition: n is any integer 

 while n  1 do 

  if even(n) 

  then  n := n/2 

  else  n := 3n + 1 

 output(n) // postcondition: n = 1 

17.1 Prove the program is partially correct. 

17.2 Discuss whether this program terminates or not. 

17.3 Write a C program to implement the algorithm, generate a set of test cases that can cover all branches 

of the program, and use the set of test cases to test the program. 
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