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Introduction 
 Measures of variation refer to a group of statistics that is intended to provide us with information on 
how a set of scores are distributed. An examination of measures of variation is a logical extension of any 
description of a data set using the measures of central tendency that we examined in the previous chapter. 
Consider a case where there are two sections of a course in statistics, and you are told that each section 
is taught by the same professor, each section has an enrollment of 15 students, and that the mean, and 
median score on a recent examination is 80 in both sections of the course. Without any additional infor-
mation you would be tempted to conclude that the performance of the students in the two sections of the 
course is reasonably similar. As a matter of fact, all of the information up to this point would suggest that 
the performance of the students in the two sections is identical. 

 Now suppose that you are shown the actual performance of each student on the examination in both 
sections of the course (see Figure 5.1).  

 Clearly the performance of the students in the two sections is radically different. The score of 
80 is not only the mean of section 1, but also a score that seems to be more representative of the 
performance of the entire class. While not all of the students scored 80, more were at that score 
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88 Chapter 5: Measures of Variation

than any other, and the number of students scoring higher or lower than 80 falls off the further the 
scores deviate from 80. The performance of the students in section 2 is far different even though the 
distribution has the same mean and median score as the first distribution. In section 2 the mean of 
80 is not at all representative of the typical performance. In fact, only one student earned a score at 
the mean. Seven students earned perfect scores of 100, while the remaining seven students earned a 
very low score of only 60.

Just as the mean is a single number that is designed to tell us where the central point of a distribu-
tion of scores is located, measures of variation are single numbers that are designed to tell us how the 
individual scores are distributed. By examining both a measure of central tendency such as the mean, 
and an appropriate measure of variation, we will be able to know not only where the central point of a 
distribution is located, but also if it tends to look more like the distribution of scores in section 1 or if it 
looks more like the distribution of scores in section 2.

The measures of variation examined in this chapter can be divided into two groups. The first group 
of statistics measures variation in a distribution in terms of the distance from the smaller scores to the 
higher scores. Included in this group of measures of variation is the range, which is a simple measure of 
the variation in a distribution computed by examining the distance from the smallest score to the largest 
score. Also included in this group of statistics are the interquartile range (IQR), and the semi-interquartile 
range (SIQR). These latter two measures of variation are often used in educational research. The second 
group of statistics measures variation in terms of a summary measure of each score’s deviation from the 
mean. The two statistics of this type that we will examine are the variance, and the standard deviation. 
The measures of variation based on deviation from the mean tend to be more useful, and are fundamental 
concepts in behavioral science research.

The Range, Interquartile Range, and Semi-interquartile Range
Range
The simplest measure of variation in a distribution of data is the range. The range is defined as the dis-
tance from the smallest observed score to the largest observed score in a set of data. For raw data, the 
range may be computed by subtracting the lower limit of the smallest observed score from the upper limit 
of the largest observed score. Consider the set of raw data below:

X: 2 4 5 5 7 8 10 12 15 18 21

The range is (21.5 − 1.5) = 20.
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Figure 5.1 Graph showing distributions for the two sections
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 Chapter 5: Measures of Variation 89

A simple alternative is to subtract the smallest observed score from the largest observed score, and 
then add 1 additional unit of measurement to compensate for the upper and lower limits. In this case, the 
range is

(21 − 2) + 1 = 20

In either case, the set of data ranges over 20 units, just as if you began reading a book on page 2 and 
continued through page 21 you would have read a total of 20 pages.

Keep in mind when using the alternative method of subtracting the smallest observed score from the 
largest observed score that we add 1 unit of measurement, not just 1. For example, if we had the follow-
ing data on income:

Income: 12,000 14,000 18,000 35,000 46,000 58,000

The range would be computed as:

(58,000 − 12,000) + 1,000 = 47,000

It would not be correct to compute the range as:

(58,000 − 12,000) + 1 = 46,001

The computation is similar for data organized in a simple or full frequency distribution as illustrated below.

X f Cf

12 7 20

10 3 13

 8 3 10

 7 5  7

 6 2  2

Σ f = 20

In a simple frequency distribution where the interval size i = 1, we do not lose any precision in mea-
surement. In this case the range would be computed as

(12.5 − 5.5) = 7

or, alternatively: 

(12 − 6) + 1 = 7.

In a frequency distribution where the interval size i > 1, we follow the same general procedure, but 
use the lower limit of the smallest interval, and the upper limit of the largest interval as our parameters 
for the computation of the range. For the data below:

X f Cf

25–29 9 75

20–24 16 66

15–19 20 50

10–14 16 30

5–9 10 14

0–4 4  4

Σf = 75
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90 Chapter 5: Measures of Variation

the range would be computed as: [29.5 − (−0.5)] = 30
or, alternatively (29 − 0) + 1 = 30.

Interquartile range
The interquartile range (IQR) is defined as the distance from the 75th percentile to the 25th percentile 
in a set of data. In the previous chapter on central tendency we saw that a few extreme scores at one end of 
the distribution can bias a measure such as the mean. The same situation is true for a measure of variation 
such as the range. A few extreme scores at one or the other end of a distribution will affect the size of the 
range. The IQR is an alternative measure of variation that eliminates the effect of the extreme scores in 
a distribution by reporting the range between the 75th and 25th percentiles. In effect, the IQR represents 
the range of the middle 50% of the distribution, and ignores the top 25% and bottom 25% of the data that 
may be subject to extreme scores.

Computing the IQR is as simple as subtracting the 25th percentile from the 75th percentile:

IQR = P75 − P25

The formula for finding a particular percentile from Chapter 3 is provided below, along with the fre-
quency distribution previously used to illustrate the procedure. To compute the IQR we will need to find 
both the 25th percentile and the 75th percentile.

X f Cf

25–29 20 125

20–24 22 105

15–19 28  83

10–14 20  55

 5–9 25  35

 0–4 10  10

Σ f = 125

The general formula for finding a given percentile is given by the equation below.

P LL +
CFP below

int

F

f
ix = −





×










where 

Px = the desired percentile
 F

P
 = the number of frequencies below the desired percentile

CF
below

 = the value from the cumulative frequency column for the interval just below F
P

LL = the lower limit of the interval containing F
P

f
int

 = the number of frequencies in the F
P
 interval

i = the interval size.

For the 25th percentile:
F (.25) (125) 31.25P = × =

For the 75th percentile:
F (.75) (125) 93.75P = × =
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 Chapter 5: Measures of Variation 91

The intervals containing the 25th and 75th percentiles are indicated below:

X   f Cf

25–29 20 125

20–24 22 105 <--(F
P 
= 93.75 is in this interval)

15–19 28 83 <--(CF
below

 = 83)

10–14 20 55

5–9 25 35 <--(F
P 
= 31.25 is in this interval)

0–4 10 10 <--(CF
below

 = 10)

Σ f = 125

To find the 25th percentile we simply substitute appropriate values into the formula as follows:

P 4.5
31.25 10

25
525 = + −



 ×





P 4.5
21.25

25
525 = +



 ×





P 4.5 (.85 5)25 = + ×

P 4.5 4.25 8.7525 = + =

To find the 75th percentile we simply substitute appropriate values into the formula as follows:

P 19.5
93.75 83

22
575 = + −



 ×





P 19.5
10.75

22
575 = + 



 ×





P 19.5 .49 575 ( )= + ×

P 19.5 2.45 21.9575 = + =

Having computed both the 25th and the 75th percentiles, we may now compute the IQR:

IQR 21.95 8.75 13.2= − =

The resulting value of 13.2 for the IQR indicates that there is a range of 13.2 points for the middle 
50% of the distribution. The advantage of the IQR over the simple range is that any bias that might result 
from a few extremely high scores or a few extremely low scores (or both) has been eliminated.

Semi-interquartile range
The final range based measure of variation presented in this chapter is the semi-interquartile range. The 
concept “interquartile range” suggests a measure of variation based on a quartile, or 25% of the distribu-
tion; however, the IQR actually represents the range of the middle 50% of the distribution. The SIQR is 
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92 Chapter 5: Measures of Variation

an alternative to the IQR that comes closer to representing a “quartile or 25%” size range in the distribu-
tion. The SIQR is simply the IQR divided by 2.

SIQR =
IQR

2

In the case of our previous example, the SIQR is

SIQR =
13.2

2
6.6=

The IQR and the SIQR are widely used in education research where there always seems to be one or 
two students at each extreme of the distribution.

The Variance and the Standard Deviation
Variance
The variance and the standard deviation are two measures of variation that are based on the concept of 
deviation from the mean. For any distribution of scores measured on a continuous scale we can compute 
a mean, and then measure the distance of each score from the mean. For example, the set of 6 scores 
presented below have a mean equal to 8.

X

13

11

9

7

5

3

We may then define deviation from the mean (di) as the distance of each score from the mean, or

d =i X X−

Using our set of 6 scores, we may then calculate the deviation from the mean for each score.

X   X − X  = di

13 (13 − 8) =   5

11 (11 − 8) =   3

9   (9 − 8) =   1
7   (7 − 8) = −1

5   (5 − 8) = −3

3   (3 − 8) = −5

One way we might construct a summary measure of variation in a distribution of scores is to com-
pute the average deviation of each score from the score’s mean. To do this, we would simple sum the 
individual deviations from the mean which we have just calculated, and then divide by the number of 
observations we have.
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d 5 3 1 ( 1) ( 3) ( 5)

6

i

n

Σ = + + + − + − + −

d 0

6
0

i

n

Σ = =

It may seem quite logical to construct a measure of variance by calculating the average deviation 
from the mean for a set of scores, but there is one small problem. The sum of the deviations from the 
mean for all distributions is always the same thing—0.

d 0iΣ =

One solution to this problem is to base our measure of variance on the squared deviation from the 
mean. By squaring the result of (X − X ), we will eliminate the negative numbers, and prevent the nega-
tive deviations and positive deviations from canceling each other out.

Applying this strategy to our original distribution will give us the following result:

X X − X (X − X )2

13 (13 − 8) =   5   (5)2 = 25

11 (11 − 8) =   3   (3)2 =  9

9   (9 − 8) =   1   (1)2  =  1

7   (7 − 8) = −1 (−1)2 =  1

5   (5 − 8) = −3 (−3)2 =  9

3   (3 − 8) = −5 (−5)2 = 25

Now if we want to construct a measure of variation that gives us a single number representing the 
average variation of each score in a distribution, we can use the mean (or average) of the squared devia-
tions of each score from the distribution mean. We need only sum the squared deviations from the mean, 
and then divide by the number of observations.

( ) 25 9 1 1 9 25

6

2X X

n

Σ − = + + + + +

( ) 70

6
11.67

2X X

n

Σ − = =

The resulting value indicates that the mean squared deviation of each score from the distribution mean is 
11.67; or stated differently, on average, the distance squared of each score from the mean is 11.67 units.

The statistic we call the variance represents the mean squared deviation from the mean for a set of 
data. The logical formula for the variance is simply:

Variance
( )2X X

n
= Σ −

where 

X = each value of X in the distribution
X  = the mean of the distribution
n = the sample size.
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94 Chapter 5: Measures of Variation

What does the variance really tell us?

Recall the situation from earlier in the chapter where we had two distributions representing the perfor-
mance of two sections of a class on an exam with the same number of observations, the same mean, and 
the same median. Yet, we could see by simple inspection that the two distributions were very different. 
The variance of the distribution will tell us how representative the mean is of each of the scores in the 
distribution. The closer each individual score is to the mean the smaller the variance will be. If each score 
is at the mean in a distribution the variance will equal zero, indicating that there is no variation from the 
mean across the entire distribution. The farther each of the individual scores is from the mean the greater 
the variance will be, indicating that the mean is not as typical of the individual scores in the distribution.

Examine the three simple distributions below.

A B C

10 10 8

8 10 6

6 6 6

4 2 6

2 2 4

Each distribution contains 5 observations, and each distribution has a mean equal to 6. Yet the obser-
vations differ with respect to how much the individual scores vary from the mean. Since the variance 
represents the average squared deviation from the mean, which distribution would you expect to have the 
greatest variance? Which distribution should have the smallest variance?

The mean value of 6 seems to be most typical of the scores in distribution C, so it should have the 
smallest variance. The scores in distribution B are much farther from the mean value of 6, so it should 
have the largest variance. The scores in distribution A appear somewhat in between, and should have a 
variance between that of distribution B and distribution C.

Let’s calculate the variance for each distribution below:

A (X − X ) (X − X )2 B (X− X ) (X − X )2 C (X − X ) (X − X )2

10 4 16 10 4 16 8 2 4

8 2 4 10 4 16 6 0 0

6 0 0 6 0  0 6 0 0

4 −2 4 2 −4 16 6 0 0

2 −4 16 2 −4 16 4 −2 4

( ) 402X XΣ − = ( ) 642X XΣ − = ( ) 82X XΣ − =

Variance:                 
40

5
8= 64

5
12.8= 8

5
1.6=

As suspected, the variance in distribution C is the smallest. For distribution C the average squared devia-
tion from the mean is 1.6 units. Distribution B has the largest variance with an average squared deviation of 
12.8 units. Distribution A is in between the two with an average squared deviation from the mean of 8 units.

It is important to realize that the size of the variance does not have any special underlying standard 
interpretation. The value of the variance does not have a special meaning like your blood pressure, where 

Raymondo_Statistical_Analysis_in_the_Behavioral_Sciences02E_Ch05_Printer.indd   94 03/02/15   12:03 PM

Chapter 5: Measures of Variation from Statistical Analysis in the Behavioral Sciences 
by James Raymondo | Second Edition | 9781465269676 | 2015 Copyright 

Property of Kendall Hunt Publishing



 Chapter 5: Measures of Variation 95

you know that you are in reasonably good condition with a systolic blood pressure of 120 and a diastolic 
pressure of 80. There is no normal or abnormal range for the variance. What the variance is telling you is 
simply what the squared distance is from the typical or average score to the mean. Variance, along with 
the mean, can then allow you to have an idea of what a particular distribution might look like, and will 
allow you to judge how well the mean serves as a measure of central tendency.

Consider the case of the three simple distributions we just examined. Typically, information for such 
distributions would not provide individual scores, but would be presented in summary form as follows:

Distribution

Summary Statistics A B C

Sample Size: 5  5 5

Mean: 6  6 6

Variance: 8.0 12.8 1.6

Even though we do not have the individual scores available, we can reach some fairly accurate conclu-
sions about what each of these distributions would look like. For example, we can see that all three distribu-
tions are of the same size (n = 5), and that all three have the same mean (X  = 6). The fact that the variance for 
distribution C is only 1.6 indicates that most of the individual scores in the distribution should be very close 
to the value of 6. After all, a distribution where every score is equal to the mean will have a variance of zero 
(remember that variance can never be negative). Similarly, we would assume that the individual scores in dis-
tribution B must be much more diverse or spread out around the mean since the variance is so much larger.

A computational formula for variance

Up to this point we have utilized a logical formula for the variance that is useful for demonstrating how 
the variance is computed, but requires us to go through some unnecessary steps. A computational for-
mula may be used, which simplifies the calculations, especially when a larger data set is involved. The 
computational formula presented below may look a little more difficult at first, but with a little experi-
ence using it you will likely find it to be much easier.

Variance

2
2

X
X

n
n

( )
=

Σ − Σ

where 

   Σ X 2 = the sum of the X s squared
(ΣX )2 = the quantity, sum of X s squared
       n = the sample size.

Notice that the computational formula for variance contains both the sum of X s squared term, and 
the quantity sum of X s squared term.

The term in the numerator: 
( )2

2

X
X

n
Σ − Σ

represents the sum of the squared deviations from the mean that was formally written as 

( )2X XΣ −

This term is also sometimes referred to as simply the sum of squares, and will play a role in several 
statistical procedures that will be examined in later chapters.
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96 Chapter 5: Measures of Variation

Let’s demonstrate that the computational formula for the variance will provide the same results that 
we previously obtained for our three distributions.

A B C

X X 2 X X 2 X X 2

10 100 10 100 8 64

8 64 10 100 6 36

6 36 6 36 6 36

4 16 2 4 6 36

2 4 2 4 4 16

Σ X = 30 Σ X 2 = 220 Σ X = 30 Σ X 2 = 244 Σ X = 30 ΣX 2 = 188

(Σ X )2 = 900 (Σ X )2 = 900 (Σ X )2 = 900

Variance Computation

Distribution A Distribution B Distribution C

220
900

5
5

− 244
900

5
5

− 188
900

5
5

−

220 180

5

− 244 180

5

− 188 180

5

−

40

5

64

5

8

5

8 12.8 1.6

In each case we obtain the same result for the variance with the computational formula that we 
previously obtained with the logical formula. Remember that the variance will never be negative. If 
your calculation of the variance results in a negative number, you can be sure that you have made an 
error somewhere. Confusing the Σ X 2 with the (Σ X )2 in the computational formula is a common mis-
take that will result in a negative number, as is neglecting to divide (ΣX )2 by n before subtracting the 
result from Σ X 2.

Some important terminology and symbols for variance

At this point we need to introduce some terminology, and appropriate symbols for the variance. There are 
three situations where we might want to calculate the variance. The logical formula and its computational 
alternative that we have been using are appropriate for two of the three situations.

Recall from Chapter 1 the distinction between a population representing the entire collection of units of 
interest in a research project, and a sample that is the smaller subgroup that we select for actual observations. 
The variance for a population is represented by the lower case Greek letter sigma squared, or σ2. The popula-
tion variance σ2 may be calculated using the formula that we have worked with up to this point. The variance 
for a sample of data, when we are only interested in describing the sample, is represented by the upper case 
letter S2, and it too may be calculated with the formula that we have worked with up to this point.
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 Chapter 5: Measures of Variation 97

However, if you also recall from Chapter 1, we made a distinction between descriptive statistics that are 
used to describe a set of data and inferential statistics that are used to infer something about a population 
parameter by the observation of sample statistics. We often have an interest in doing just that in behavioral 
science research, or at the very least we are interested in being able to generalize our results to a larger 
population. It turns out that if you were to actually know the value of a population’s variance, and then take 
a series of samples from the population and compare the sample variances computed for each sample to the 
actual population variance, you would find that the sample variances tend to underestimate the true size of 
the population variance. The sample variance is sometimes referred to as a biased estimator of the popula-
tion variance, and the direction of the bias is to underestimate the true size of the population variance.

We can reduce the bias of the estimate of the population variance when using data from a sample 
by making a slight adjustment in the formula for the sample variance when we intended it to serve as an 
estimate of the population variance. Since the direction of the bias is to underestimate the true population 
variance, we can increase the size of the estimated variance by using the value n − 1 in the denominator 
of the variance formula in place of the usual denominator n. We will then use the lower case letter s2 to 
represent a sample variance that is being used as an estimate of the population variance.

It might be useful at this point to review the computational formulas for the three situations for com-
puting variance.

Symbol Situation Computational Formula

σ2 Population Variance 2

2
2

X
X

n
n

( )
σ =

Σ − Σ

S2 Sample Variance S2

2
2

X
X

n
n

( )
=

Σ − Σ

s2 Sample Variance used to estimate the population variance σ2

X
X

n
n

s
1

2

2
2( )

=
Σ − Σ

−

n − 1 as degrees of freedom

The use of “n − 1” in the denominator of the formula for variance is the result of the concept of degrees 
of freedom. One of the things that we observed when looking at deviation from the mean was that the 
sum of the deviations from the mean always equaled zero. However, when dealing with sample data from 
a population there is no guarantee that the sum of the deviations of the individual sample scores from the 
population mean will actually equal zero. (Don’t be confused by the fact that the sum of the deviations of 
the sample scores from the sample mean will equal zero. What we are concerned with here is whether or 
not the sum of the deviations of the sample scores from the population mean will equal zero.)

Consider this example of a population of N = 10 with a mean μ = 30. (You may want to verify that 
the sum of the deviations of the population scores from the population mean is actually zero.) Suppose I 
select a sample of n = 5 scores from the population as indicated below.

We can calculate a sample mean for the five scores that were selected from the population, and if we 
calculate the sum of the deviations from the sample mean for the five scores in the sample we will in fact 
find the sum equal to. But is the sum of the deviations of the sample scores from the population mean equal 
to zero? No! The sum of the deviations from the sample scores to the population mean is actually −30. How 
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98 Chapter 5: Measures of Variation

many of the sample scores would I have to change (or control) if I wanted to force the sum of the deviations 
of the sample scores from the population mean to equal zero? The answer is that only one of the sample 
scores must be controlled. I can always ensure that the sum of the deviations of the sample scores from the 
population mean will equal zero if I can control one of the sample scores. It does not matter which score I 
choose to control. I simply must be sure that the value of the score I choose will result in a deviation from 
the population mean that when added to the other deviations from the population mean will give me a sum 
of zero. Since I must control only one score, it means that the other scores are free to take on any value. In 
other words, I have n − 1 degrees of freedom. The concept of degrees of freedom will be examined again 
when we begin our investigation of hypothesis testing in later chapters.

It is easy to be confused by the concept of degrees of freedom, or the difference between describing 
a sample variance through the use of one formula, and estimating the population variance from sample 
data using a different formula. Like many of the concepts in statistics, it takes time for reflection and 
experience before everything falls into place. At this point, the most important thing to keep in mind is 
what variance tells us about a distribution of scores. Remember, the larger the variance the less likely that 
the individual scores of a distribution are close to the mean, and the less likely that the mean is a good 
indicator of what the typical score in a distribution was. The smaller the variance the more likely that the 
individual scores of the distribution are close to the mean, and the more likely that the mean is a good 
indicator of the typical score in a distribution.

We have examined the logical and computational formulas for calculating the variance when using 
raw data or a set of individual scores. We will follow a pattern similar to what we did in Chapter 4 on 
measures of central tendency and also briefly examine the method for computing variance when data are 
presented in a simple frequency distribution of size i = 1, and a frequency distribution when i > 1. It is 
useful to examine these two situations since we do not always control the way data are presented to us. 
But before moving to these other approaches I want to introduce the concept of standard deviation, 
which is closely related to variance.

Population

Sample

20

30

10

15

10

30

45

15

35

45

20

35

25

40

45

N = 10

 µ= 30

 n = 5

X = 24

Figure 5.3 Illustration of population data and sample drawn from it

Population

Describing a population
or a sample variance

σ2 =

   X2 − (   X )2

           n
n

S2 =

   X2 − (   X )2

           n
n

Estimating the population
variance by observation

of a sample

s2 =
   ΣX2 − (ΣX )2

              n
  n − 1

Sample

Σ Σ

ΣΣ

Figure 5.2 Diagram of population and sample with the three formulas
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Standard deviation
Many more people have heard the term “standard deviation” than the number who actually knows what it 
means. But what is a “standard deviation?” The standard deviation of a set of data is simply the square 
root of the variance. Just as the variance can be defined as the mean of the squared deviations from the 
mean for a set of data, the standard deviation can be defined as the square root of the mean of the squared 
deviations from the mean for a set of data.

You have every reason to be wondering why do we care about the standard deviation when we already 
know the variance? There are really two reasons. First, recall that we were not able to base a measure of 
variation in a set of data on the simple deviation from the mean due to the fact that the sum of the simple 
deviations from the mean was always the same thing—zero. We eliminated that problem by squaring the 
deviations from the mean, and using the sum of the squared deviations as the basis for our measurement 
of variance. But in solving one problem we artificially inflated our measure of variance when we squared 
all of the deviations from the mean. In one sense you can think of the standard deviation as being a mea-
sure of variation that is more in line with what we were intending to measure in the first place since by 
taking the square root of the variance we are “unsquaring” the deviations from the mean.

The information conveyed by the variance and the standard deviation is essentially the same, but 
the standard deviation is usually a much smaller value. There is an exception of course when the vari-
ance is less than 1.00, since the square root of a number greater than zero and less than 1.00 is larger 
than the original number. For example, the square root of 0.36 is the larger value 0.60, but in most 
cases the variance is a much larger number, and we will find it much easier to work with the smaller 
value of a standard deviation.

However, it is the second reason for working with the standard deviation that is much more important. 
It turns out that by knowing the mean and the standard deviation for certain types of distributions we can 
also know a great deal about how the individual observations in that distribution are organized. The mean 
and the standard deviation will tell us a great deal about any distribution that is normal in form. We dis-
cussed the idea of a distribution being normal in form or having a bell-shaped curve in Chapter 3, and we 
will be examining the concept of a normal distribution in great detail in the next chapter. Furthermore, 
the standard deviation, and a related concept of the standard error that is based on the standard devia-
tion, will be key terms when we begin our investigation of hypothesis testing in later chapters.

Just as we represented the population variance by the symbol of lower case sigma squared (σ2), 
we represent the symbol for a population standard deviation by the lower case sigma (σ). Similarly, 
a sample standard deviation is represented by the upper case S, and a standard deviation that is being 
used to infer a population standard deviation is symbolized by a lower case s. We will still have the 
same problem with standard deviation that we had with variance when we attempt to use sample data 
to estimate the population standard deviation. We will use the same technique of altering the denomi-
nator of the formula by using n – 1 in place of the usual denominator n when we wish to estimate 
the population standard deviation. With this in mind, we can present both the logical formula and the 
computational formula for the standard deviation.

Logical Formula for Standard Deviation:

σ or 
X X

n
S

( – )2

= Σ

Computational formula for Standard Deviation:

σ or 
X

X

n
n

S

2
2( )

=
Σ − Σ
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100 Chapter 5: Measures of Variation

When using data from a sample to estimate a population standard deviation we would simply sub-
stitute n − 1 in the denominator of the formula. For example, the computational formula would become:

Computational formula for Sample Standard Deviation used to estimate the Population 
Standard Deviation σ:

X
X

n
n

s
1

2
2( )

=
Σ − Σ

−

Technically, the correction factor of n − 1 is sufficient to adjust for the bias when using the sample 
variance s2 as an estimate of the population variance σ2. However, the sample based standard deviation s 
will still be a biased estimator of the population standard deviation σ even when using the correction factor 
of n − 1. This is especially true when working with a very small sample size. Fortunately, once the sample 
size moves above an n = 20 or so, the bias becomes very slight, and because many research applications 
in the behavioral sciences involve a large sample size we need not worry in most cases. Those of you with 
statistical function calculators might take a moment to examine your function keys. Many statistical cal-
culators will automatically compute the mean and standard deviation for a set of data, and some will give 
you a choice on how you want the standard deviation computed. You may see two keys marked as: σ

n
, and 

σ
n –1

, providing you with a choice of a descriptive or an inferential computation of the standard deviation.
Computing the standard deviation is relatively simple. Just find the variance, and then take the square root. 

For example, we previously computed the variance for three simple distributions, and obtained the results of

A B C

X X 2 X X 2 X X 2

10 100 10 100 8 64

8 64 10 100 6 36

6 36 6 36 6 36

4 16 2 4 6 36

2 4 2 4 4 16

Σ X = 30 Σ X 2 = 220 Σ X = 30 Σ X 2 = 244 Σ X = 30 ΣX 2 = 188

(Σ X )2 = 900 (Σ X )2 = 900 (Σ X )2 = 900

S2 = 8; S2 = 12.8; and S2 = 1.6.

Standard Deviation Computation

Distribution A Distribution B Distribution C

220
900

5
5

−
=

−
=

244
900

5
5

188
900

5
5

−
=

220 180

5

−
=

40

5
=

244 180

5

−
=

64

5
=

188 180

5

−
=

8

5
=

8 12.8 1.6

S 8 2.83 S 12.8 3.58 S 1.6 1.26A B C= = = = = = S 8 2.83 S 12.8 3.58 S 1.6 1.26A B C= = = = = = S 8 2.83 S 12.8 3.58 S 1.6 1.26A B C= = = = = =
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 Chapter 5: Measures of Variation 101

To compute the standard deviation we simply took the square root of each of the observed 
variances.

Computing Variance and Standard Deviation for Frequency 
Distributions
As we have seen earlier, we do not always control the way data are presented to us. On occasion we may be 
presented with data already in the form of a frequency distribution with no access to the original raw scores, 
and yet we may still want to compute a mean, or a variance and standard deviation. Variance and standard 
deviation may be computed for frequency distributions by making a simple adjustment in the formula fol-
lowing the same pattern we used when computing the mean for frequency distributions in Chapter 4.

To compute the variance we will need to alter our original computational formula for raw data:

X
X

n
n

S2

2
2( )

=
Σ − Σ

as follows:

fX
fX

n
n

S

( )

2

2
2

=
Σ − Σ

where

f X   = each value of X times its frequency
f X 2 = each value of X squared times its frequency

We must simply use the number of frequencies f in each interval to weight the value of Σ X 2 and (Σ X )2 
in each interval.

Consider the simple frequency distribution below, which we used in Chapter 4 to compute a mean. 
We can add the appropriate columns to the frequency distribution to obtain the necessary sums.

X f f X f X  2

11 1 11 121

9 5 45 405

8 4 32 256

5 3 15 75

3 3 9 27

Σf = 16 Σf X = 112 Σf X  2 = 884

Note that the f X 2 column represents the product of f × X × X, and as such you may obtain it two ways. 
Consider the top two entries in the f X 2 column of the frequency distribution above. You may first square 
each X value, and then multiply the resulting sum by the appropriate value of f as follows:

X = 11 X 2 = 121 f = 1 f X 2 = 1 × 121 = 121

X = 9 X 2 = 81 f = 5 f X 2 = 5 × 81 = 405
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102 Chapter 5: Measures of Variation

and so on, or you might see that you already have the value of f X, and may simply multiply that column 
by the value of X. Since multiplication is commutative it does not matter what order you perform the 
computation. That is:

f X 2 = f × X × X = f × X 2 = f X × X

So we can also obtain the f X 2 column as follows:

X = 1  f = 1 f X = 11 f X 2 = f X × X = 11 × 11 = 121

X = 9 f = 5 f X = 45 f X 2 = f X × X = 45 × 9 = 405

Use which ever method is easier for you.
To complete the computation for the variance we need only plug the numbers into the formula. Keep 

in mind that n is equal to the total number of observations in our sample, not the number of intervals in 
which they happen to be categorized. In this case, n = 16, not 5.

f X
f X

n
n

S

( )

2

2
2

=
Σ − Σ

 
S

884
12544

16
16

2 =
−

 
S

884 784

16
2 = −

 
S

100

16
6.252 = =

So our variance is equal to 6.25.
To compute the standard deviation we would take the square root of the variance.

S = 6.25 2.5=

Notice that we are assuming that we are interested in describing the observed sample, and are not 
attempting to estimate a population variance or standard deviation. This is evident from our use of n = 16 
in the formula instead of n – 1 = 15.

We follow the same general procedure when working with a frequency distribution where the inter-
val size is greater than 1. The formula for variance must be adjusted just as it was when working with the 
simpler frequency distribution. We may write the formula as before as:

fX
fX

n
n

S

( )

2

2
2

=
Σ ′ − Σ ′

where

X ′ = the interval midpoint.

We will again use one of the frequency distributions from Chapter 4. Our first step is to find the 
midpoint of each interval. From that point on we are simply repeating the procedure that we followed 
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 Chapter 5: Measures of Variation 103

for the frequency distribution where i = 1. We will need an f X ′ column, and an f X ′2 column to compute 
the variance.

X f X ′ f X ′ f X ′2

45–49 6 47 282 13,254

40–44 8 42 336 14,112

35–39 12 37 444 16,428

30–34 10 32 320 10,240

25–29 9 27 243 6,561

20–24 5 22 110 2,420

Σf = 50 Σf X ′ = 1,735 Σf X ′2 = 63,015

   
S

63015
(1735)

50
50

2

2

=
−

  
S

63015
3,010,225

50
50

2 =
−

   
S

63015 60204.5

50
2 = −

S
2810.5

50
56.212 = =

We have computed the variance, and may now compute the standard deviation by simply taking the 
square root of 56.21.

S 56.21 7.50= =

Variance as Prediction Error (or Cabo San Lucas Here I Come!)
We have examined the idea of variation in data in several different ways such as the range, the IQR, the 
SIQR, variance, and standard deviation. Toward that end, we have spent a great deal of time doing a vari-
ety of computations. While it is important to be able to take a statistical formula, apply it to a set of data, 
and generate the correct result, it is much more important to know why we do it. In other words, what 
does the resulting statistic mean? What does it tell us about a set of data that we did not know before?

Up until now I have stressed the idea that variance is important because it tells us something about 
the way that individual scores are distributed around their mean. By knowing the size of the variance we 
know how representative the mean is of the individual scores in the distribution. The variance viewed 
in those terms is an important piece of information, but in the behavioral sciences we can, and often do, 
look at variance in another way. We look at variance as a type of prediction error, and try to find ways to 
reduce the size of prediction error. Or you might think of the process as simply trying to do a better job 
of predicting the value of some variable that we consider important in our research.

Suppose we have a set of data representing annual income in thousands of dollars for a group of 
n = 10 individuals.
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104 Chapter 5: Measures of Variation

Income (× 1,000)

30

20

50

15

12

75

40

15

22

16

Σf = 295

We could calculate the mean income and would find that it is 29.5, or $29,500 per year. By examining 
the 10 scores in the distribution you can see that there is variation present. That is, not everyone has an 
income of 29.5; the incomes vary, some are higher and some are lower.

Now suppose I told you that I had the income of each person written on a piece of paper, and that I 
was going to draw the pieces of paper at random and let you guess what the person’s income was. The 
only restriction is that you have to make the same guess each time. You are free to choose any of the 
incomes represented, or any other value for that matter as your guess. All 10 incomes will eventually be 
selected, and I am going to measure how well you guess by comparing your guess to the income that is 
chosen. Since some of your guesses will be too high and others too low, I am going to square the differ-
ence between the actual income and your guess to eliminate any negative numbers. After all 10 incomes 
have been selected, I will calculate a mean of your squared difference for each guess as an indication of 
how well you have done.

What income value would you choose as your guess? You want to select a value to guess each time 
that will give you the smallest amount of squared error possible. (Choose wisely because there might be 
a prize in this for you if you win. I’m thinking maybe some nice luggage and a trip to Cabo San Lucas, 
but I haven’t made up my mind yet.)

If you examine the distribution you will notice that there are two scores at 15, and you might be 
tempted to select the value 15 as your guess since your mean squared difference for those two cases 
would be zero. However, your mean squared difference across all 10 incomes would be 575.9 if you 
select the value 15 as your guess. (You might want to verify this by subtracting 15 from each of the 
observed incomes, squaring the difference, and then averaging the 10 results). Is that a winning perfor-
mance? I doubt it, it seems high.

Selecting the mode of 15 did not seem to be a wise strategy. What if you selected the median income 
as your guess? If you rearrange the numbers you will find the median to be equal to 21. If 21 becomes 
your guess, you will not be exactly right on any of the 10 incomes, but your mean squared difference 
across all 10 incomes will be 437.9, which is much improved over the strategy of selecting 15, but is it 
the best you could do?

One final strategy might be to select the mean value of 29.5 as your guess. Again, you will not be 
exactly right on any of the 10 incomes, but how would you do across all 10? By selecting the mean of 
29.5 as your guess, your mean squared difference would be 365.65. That is the best we have seen yet, and 
in fact, there is no other guess that would be any better. Now if you think about how we have measured 
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 Chapter 5: Measures of Variation 105

the accuracy of each guess, you might recognize that the value of 365.65 represents something else we 
have examined in this chapter. We took each score, subtracted your guess of the mean, squared the dif-
ference, and then calculated the mean of the 10 squared deviations. In other words, we computed the 
variance.

Income (× 1,000) (X − X ) (X − X )2

30 0.5 0.25

20 −9.5 90.25

50 20.5 420.25

15 −14.5 210.25

12 −17.5 306.25

75 45.5 2070.25

40 10.5 110.25

15 −14.5 210.25

22 −7.5 56.25

16 −13.5 182.25

( ) 3656.502X XΣ − =

S
3656.50

10
365.652 = =

Since there is no other single value that would serve as a better guess of the individual scores than 
the mean, we can think of the variance as the maximum amount of prediction error that we would have 
to accept when trying to predict an individual score. Or to think of it a different way, your best guess of a 
score in a distribution is the mean, assuming that no additional information is available to you. (For those 
of you who originally guessed the mean, the prize committee informs me that neither the trip to Cabo 
nor the luggage is available. You do win our home game allowing you hours of fun guessing anyone’s 
income you please.)

Now let’s change the rules a little bit. Suppose before I have you guess the income value, I am will-
ing to give you one piece of additional information. It would be in your best interest to ask for something 
that might help you better predict income. What sorts of things (variables) are related to income? You 
can probably think of many things, but certainly education is a key variable that helps determine one’s 
income. Suppose I am willing to tell you if the income I have selected is that of a person who has a col-
lege degree or not. Let’s also suppose that I am willing to let you provide two different incomes as your 
guess; one for the college graduates, and one for the noncollege graduates. (I hope you understand that by 
changing the rules of the game the trip to Cabo San Lucas is definitely out of the question for this round. 
No, you’re not going to get the luggage either!)

As you might suspect, your best strategy for guessing has changed. In the light of this new informa-
tion, your best strategy is to guess the mean of the college graduates as the selected income when you 
know I have selected a college graduate, and to guess the mean of the noncollege graduates when you 
know I have selected a noncollege graduate. Let’s look at the income distribution again with the new 
information added.
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106 Chapter 5: Measures of Variation

College Graduate Income (× 1,000)

YES 30

NO 20

YES 50

NO 15

NO 12 College Graduate’s Mean = 43.4

YES 75 Noncollege Graduate’s Mean = 15.6

YES 40

NO 15

YES 22

NO 16

The mean income of the college graduates is 43.4 or $43,400, and the mean income of the noncol-
lege graduates is 15.6, or $15,600. How well can you guess income now if you guess the college graduate 
mean of 43.4 when you know the individual has a college degree, and guess the noncollege graduate mean 
of 15.6 when you know the individual does not have a college degree? We will substitute the appropriate 
mean into the calculation of (X – X ), and (X – X )2, and then compute what we can think of as a modified 
variance (symbolized by S′2).

College Graduate Income (× 1,000) (X − X ) (X − X )2

YES 30 (30 − 43.4) = −13.4 179.56

NO 20 (20 − 15.6) = 4.4 19.36

YES 50 (50 − 43.4) = 6.6 43.56

NO 15 (15 − 15.6) = −0.6 0.36

NO 12 (12 − 15.6) = −3.6 12.96

YES 75 (75 − 43.4) = 31.6 998.56

YES 40 (40 − 43.4) = −3.4 11.56

NO 15 (15 − 15.6) = −0.6 0.36

YES 22 (22 − 43.4) = −21.4 457.96

NO 16 (16 − 15.6) = 0.4 0.16

( ) 1724.402X XΣ − =

S '
1724.40

10
172.442 = =

When we use the mean income of the college graduates to guess a college graduate’s income, and 
the mean income of the noncollege graduates to guess the mean income of the noncollege graduates, and 
then find the mean squared deviation, we arrive at a modified measure of variance; one that uses the spe-
cific group mean in place of the overall group mean. In this case using educational level to help predict 
income results in a modified variance of 172.44, which we can compare with our previous variance of 
365.65. By using the appropriate mean income for each group we have been able to reduce the amount 
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 Chapter 5: Measures of Variation 107

of variance by 193.21 points (365.65 – 172.44), or we can express that difference as a percentage of the 
original variance and say that we have reduced the variance by 52.8%.

Using educational level to help predict income has explained over half (52.8%) of the variance in 
income. Not everyone in our small sample of 10 individuals has the same income, variation is present. By 
knowing what the individual’s educational level is we are able to explain or account for over half of the 
variation in income. This idea of being able to explain or reduce variance in one variable by knowing the 
value of a second variable is one of the more important concepts in statistical analysis in the behavioral 
sciences. We will deal with this concept again when looking at the interpretation of correlation between 
two variables in Chapter 9, and in assessing the quality of a linear regression analysis in Chapter 10.

Computer Applications
1. Select several variables from the GSS data set, and generate descriptive statistics.
2. Be sure to click on the “Options” button and request the variance and range in addition to the 

default statistics of mean, standard deviation, minimum, and maximum.
3. Enter data from one of the short examples from the text and compare the results to SPSS. Is SPSS 

using the variance formula with “n” as the denominator, or “n – 1?”

How to do it
Open the GSS data set, and then click on “Analyze,” “Descriptive Statistics,” and then “Descriptives.” 
Highlight the desired variables and select them by clicking on the direction arrow. Click on “Options” to 
request additional statistics such as the variance and range. Click on “OK” to run the procedure.

Clear the GSS data set by clicking on “File,” “New,” and then “Data.” Use the new empty Data Editor 
Screen to input data from one of the simple examples from the text. Run the descriptive statistics proce-
dure with “variance” requested, and determine the formula used.

Summary of Key Points
Measures of variation are a group of statistics that indicate how a set of scores is distributed. Some mea-
sures of variation indicate the variation from the bottom or lower end of the distribution to the top or the 
upper end of the distribution, while other measures of variation indicate the variation of each score from 
a central point such as the mean. The former techniques typically measure the range of the distribution, 
while the latter techniques typically measure deviation from the mean.

Range—The range is the distance from the smallest score in a distribution to the largest score. It is 
one of the simplest measures of variation.
Interquartile Range—The interquartile range is the distance from the 75th percentile to the 25th 
percentile in a distribution.
Semi-Interquartile Range—The semi-interquartile range is the interquartile range divided by 2.
Deviation from the Mean—Deviation from the mean is a measure of each score’s distance from the 
mean. The sum of the deviations from the mean is always zero.
Variance—The variance is the average of the squared deviations from the mean for a set of scores. 
We square the deviations to keep the positive and negative deviations from cancelling each other out. 
The smaller the variance the more closely the scores of a distribution are to their mean.
Standard Deviation—The standard deviation is the square root of the variance.
Degrees of Freedom—The number of values in a sample that are free to take on any value and still 
represent an unbiased estimate of a population parameter.
Normal in Form—A distribution of scores whose shape approximates that of a normal or bell-
shaped curve.
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108 Chapter 5: Measures of Variation

Reduce Variance—The ability to reduce the amount of error when predicting a variable by making 
use of information obtained from a second variable. Reducing or explaining variance is an important 
concept that is central to several statistical procedures.

Questions and Problems for Review
1. Compute the range for the following sets of data:

A. 24 26 28 30 38 49 55 56 67 75
B. 0.50 1.25 3.50 4.55 8.95 10.50

2. Under what circumstances would it be wise to compute the IQR or the SIQR?
3. Examine the frequency distribution below. Do you think it would be better to report the range for 

these data, or the IQR? Why?

X f Cf

95–99 3 135

90–94 3 132

85–89 20 129

80–84 25 109

75–79 29 84

70–74 24 55

65–69 20 31

60–64 4 11

55–59 5 7

50–54 2 2

Σf = 135

4. Compute the range, IQR, and SIQR for the data in Problem 3 above.
5. Examine the summary information presented below. What can you conclude about the income 

distribution for each occupational category? For which groups does the mean seem to be a better 
measure of central tendency? For which groups is the mean less indicative of overall group income?

Income

Occupation Mean ($) Standard Deviation ($)

Accountant 35,500 8,500

Attorney 72,200 23,100

Engineer 57,800 12,100

Evangelist 66,600 57,800

Physician 108,000 8,200

Psychic 23,700 4,250

6. Compute the variance and standard deviation for the two sections of the statistics class illustrated in 
Figure 5.1.
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7. Compute the variance and standard deviation for the simple frequency distribution below.

X f

20 2

18 4

15 7

12 4

10 3

Σf = 20

8. What does it mean to be able to explain variance?
9. Scores for the verbal section of the SAT are presented below for a group of n = 10 students.

A. Compute the variance for the entire group.
B. Compute the mean score of the females, and the mean score of the males.

Gender Verbal SAT

Female 500

Female 650

Female 485

Female 720

Male 450

Male 395

Male 700

Male 630

Male 450

Male 585

10. How much of the variance in the SAT scores in problem 9 can be explained by gender? (Hint: you 
will need to use the mean score of the females when predicting a female score, and the mean score 
of the males when predicting a male score to compute a modified variance).
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