
3.1 Data Types

3.1.1 String

3.1.2 Char

3.1.3 Integer

3.1.4 Double

3.2 Variables

3.3 Declaring Variables

3.3.1 Constants

3.4 Arithmetic Operations

3.4.1 Operator Precedence

3.5 Assignment Statements

3.5.1 Type Conversions (Casting)

3.6 Input Boxes

3.7 Formatting Output

3.8 Math Functions

3.9 Visual Basic Design Guidelines

3.10 Summary

Data3

65

03_Hong-Fischer_065-096.indd 65 5/1/14 11:23 AM

66 n Chapter 3 Data

3.1 DATA TYPES
In programming we use different types of data. In day-to-day expe-
riences we don’t give a lot of thought to what kind of data we are
using. If we are discussing the name and age of a person we might
use values like Josh is eighteen years old, but in programming we
must state what type of data Josh and the number 18 are so the
values can be input and/or stored in the program. Visual Basic
requires all values that are stored or input to be classified into one
of the following data types:

© 2014 lucadp. Used under license from Shutterstock, Inc.

Data
Type

Memory
Used

Value
Range

Category

Example

Byte 1 byte 0 to 255 (unsigned) numeric 27

Short 2 bytes -32,768 to 32,767 (signed) numeric 27000

Integer 4 bytes -2,147,483,648 to 2,147,483,647 (signed) numeric 27000000

Single 4 bytes 1.401298E-45 to 3.4028235E+38 for positive values
and -3.4028235E+38 to -1.401298E-45 for negative
values

numeric 27.5

Long 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (9.2...E+18) (signed)

numeric 27.5E+12

Double 8 bytes 4.94065645841246544E-324 to
1.79769313486231570E+308 for positive values
-1.79769313486231570E+308
to -4.94065645841246544E-324 for negative values

numeric 27.5E+200

Decimal 16 bytes +/-79,228,162,514,264,337,593,543,950,335 numeric 27 billion

Char 2 bytes A single character non-numeric “D”

String Varies One or more characters non-numeric “DOG”

Date 8 bytes 0:00:00 (midnight) on January 1, 0001 through
11:59:59 PM on December 31, 9999
Now stores current date and time

non-numeric 12:23:00 on
December 25,
2012

Boolean 2 bytes True or False logical True

Object 4 bytes Stores memory address of an object object

03_Hong-Fischer_065-096.indd 66 5/1/14 11:23 AM

3.1 Data Types n 67

3.1.1 String
We have already worked with the String data type. In Chapter 2, we saw various uses of strings being
printed in a MessageBox, a TextBox, and a ListBox. The String values can contain any characters—
numeric or non-numeric, or a combination of these two—as long as it is enclosed in quotes.

Some examples of Strings:

“Kara”

“Julianna!”

“12 Smith Road”

“Patchogue, NY”

“744-2536”

3.1.2 Char
A subset of the String data type is a Char. A Char value is any single character. It can be a letter, number,
or any special character including a space. In Visual Basic, Char values are enclosed in double quotes.

Some examples of Char values:

“A”

“@”

“7”

“ ”—this is a space in-between the double quotes

3.1.3 Integer
Numbers can be stored in two different categories. The Integer category includes positive and negative
whole numbers (… -3, -2, -1, 0, 1, 2, 3 …).

That is, the whole numbers and their opposites.

 …-3 -2 -1 0 1 2 3…

Examples:

0 36 -218 -8 -2e4 7e5 4.12e6

 These are numbers expressed in
 an exponential or scientific notation.

 -2e4 = -20000 7e5 = 700000 4.12e6 = 4120000

03_Hong-Fischer_065-096.indd 67 5/1/14 11:23 AM

68 n Chapter 3 Data

3.1.4 Double
The Double data type refers to real numbers. The real number category includes rational and irrational
numbers that can be expressed using a decimal representation (3.14, 19.999999).

Examples:

7.0 -3.25 0.0 24.5 123.45 -15.2e2 -4.7e-3 3e-5

Note: -15.2e2 = -1520 -4.7e - 3 = -.0047 3e - 5 = .00003

Knowing the appropriate data type to store data is an important part of programming. For example if
you were storing a value for your name (“Julianna”) you would use a String. If you were storing a per-
son’s middle initial (“A”) you would store as a Char. String and Char values MUST be enclosed in double
quotes to distinguish them from variable names.

If you were storing Julianna’s age you would use a Byte, Short, or Integer data type since age will be
a whole number value. If you were storing someone’s salary you would store the value as a Single or
Double data type because currency or money values include a decimal expression.

In this book, the examples given will use the following:

String—for any non-numeric values

Char—for any single character

Integer—for any whole numbers

Double—for any values that would contain a decimal

EXERCISES
Determine which data type is best to use to store the following.

 1. A body temperature

 2. Your birthday

 3. The area of a circle

 4. The air temperature

 5. Gender (M or F)

 6. A 5-digit zip code

 7. A town’s name

 8. A telephone number with hyphens

 9. The price of an item

 10. The number of students in a classroom

03_Hong-Fischer_065-096.indd 68 5/1/14 11:23 AM

3.2 Variables n 69

 11. The grade (out of 100) on your next exam

 12. Your average for the year

 13. Your grade as either A, B, C, D, or F

 14. An area code

 15. Your salary

 16. Your hourly rate for your job

3.2 VARIABLES
In algebra, quantities are referred to by names which we call variables. We use common variable names
like x, y, z, a, b, etc., to represent numeric values. In programming, a variable is an item of data. The
shortest variable name would be a single letter; however, using full names is preferred to describe the
data. There are certain rules and guidelines for naming variables.

• Variable name must use a letter as the first character.

• Variable name can include any letters, numbers and underscores after the first character.

• Variable name can’t use a space, period (.), exclamation mark (!), or non-numeric characters
such as @, &, $, # in the name.

• Although variable names can contain hundreds of characters, thirty-two is the recommended
maximum number of characters to use.

• Meaningful names instead of single characters are good practice.

• Variable name should not be a keyword (see Appendix B).

• Variable names are not case sensitive (num and NUM would be considered the same variable).

Some examples of variable names are:

 x ab clue x3 dog name gpa full_name r2d2

 first_name last_name grade_on_test final_exam_grade

*note the use of the underscore in the above

 firstName lastName gradeOnTest finalExamGrade

*note the use of lowercase letters with an uppercase letter in the above

These are illegal variable names:

 4tune Dim x+y first name

 begins with a number keyword contains a + sign contains a space

A variable is a name given by the programmer to a memory storage location. To use a variable in a
program, there must be space allocated in the computer RAM to hold the value assigned to that variable.
This is accomplished by initially declaring a variable before it is used in the program. It actually allocates
memory to hold the value of the variable.

03_Hong-Fischer_065-096.indd 69 5/1/14 11:23 AM

70 n Chapter 3 Data

3.3 DECLARING VARIABLES
Declaration Statements are programming statements that are used for giving a variable a name and
designating what type of data will be stored in it. When we declare a variable using a Dim (short for
Dimension) statement, we allocate a piece of memory. In most cases this memory has the name of the
variable, and can store a certain type of data that you specify. Declaration statements have the general
syntax:

Dim variable-name As data-type

Examples:

Dim name As String

Dim gender As Char

Dim age As Integer

Dim salary As Double

If you choose to declare multiple variables in a single Dim statement you can do so, the one rule is
that all variables declared in that line MUST be the same data type.

Dim variable-name1, variable-name2…variable-nameN As data-type

Examples:

Dim firstname, lastname As String

Dim age, weight As Integer

Dim payrate, raise, totalsalary As Double

The first time a value is stored in a variable, the variable is said to be initialized. In Visual Basic, by
default, all numeric variables are initialized to zero and all String and Char values are initialized to zero-
length strings (strings containing no characters); however, it is good practice to initialize all variables
before they are used. In many other languages, numeric variables are not necessarily initialized to zero,
nor strings to be empty. To gain experience in programming, initialize all variables before they are used
in program statements.

Examples:

name = “” ‘-to initialize an empty string

age = 0 ‘-to initialize an integer to 0

salary = 0.0 ‘-to initialize a double to 0

A variable can also be initialized in the declaration statement using the syntax:

Dim variable-name As data-type = value

Examples:

Dim name As String = “”
Dim age As Integer = 0
Dim salary As Double = 0.0

03_Hong-Fischer_065-096.indd 70 5/1/14 11:23 AM

3.3 Declaring Variables n 71

EXERCISES

 1. Which of the following are legal or illegal variable names? If illegal, state the reason why.

 x ab cat money$ a-b

 x3 last bal r2d2 sum.of c3PO

 of$er 2day name tax# 3po2

 2. Write a declaration statement to declare the variable tax as a Double.

 3. Write a declaration statement to declare the variable day as a String.

 4. Write a declaration statement to declare the variable total as an Integer.

 5. Write a declaration statement to declare the variables first and last as strings, using only one
Dim statement.

 6. Write a declaration statement to declare the variables a, b, and c as integers, using only one
Dim statement.

 7. Write the statement that will declare the variable x and assign a value of 57.

 8. Write a statement that will assign the value stored in x into the variable y.

 9. Write a statement that will assign the person’s name (a String) of Kara to the variable
firstname.

03_Hong-Fischer_065-096.indd 71 5/1/14 11:23 AM

72 n Chapter 3 Data

3.3.1 Constants
There is sometimes a need to protect the value of a variable throughout a program which means that
once the variable is declared and assigned a value it is impossible to change the value throughout the
program execution. These types of “protected” variables are referred to as constants. The syntax to
declare them is different from other variable dimension statements. The word Const is used in place of
Dim and the variable MUST be initialized to a value.

Const variable-name As data-type = value

The keyword Const indicates that you are declaring a constant, and the value following the equal
sign indicates the value that it is assigned to permanently throughout the program execution.

Examples:

Const TAX As Double = 0.08645

Const PI As Double = 3.14159

Const HOURS As Integer = 40

Const AGE As Integer = 21

Const NAME As String = “Visual Basic”

Unlike a variable, a constant is generally named by using uppercase letters. The value of the constant
will not change during the run of the program. Any attempt to modify the constant variable value
throughout the program will result in an error. If you use a variable in your program code and the value
never changes, you should consider storing the value as a constant.

There are several advantages of using constants. They can make the program code more readable.
They can also save memory, since constants take less space. They also make program-wide changes eas-
ier to accomplish.

3.4 ARITHMETIC OPERATIONS
Visual Basic uses the arithmetic operations we are all familiar with. Some of the operator symbols are
different from those we learned years ago. There are also a few additional operators that we will see.

Addition: takes the common symbol of +

 12 + 3

Subtraction: takes the common symbol of -

 8 - 5

 Multiplication: in arithmetic, there are many ways to indicate multiplication, but in VB
there is only one operator that will indicate multiplication, the symbol *

 12 * 4

03_Hong-Fischer_065-096.indd 72 5/1/14 11:23 AM

3.4 Arithmetic Operations n 73

Division: Again, in VB, there is only one symbol that indicates division—the symbol /

 20 / 4

Exponents: Since we cannot place an exponent in the upper portion of a line, in VB to indi-
cate an exponent, we use the symbol ^ . To write 23 we would type the codes in as:

 2 ^ 3

Parentheses: They have the same meaning as in arithmetic. We perform the operation(s)
inside the parentheses first.

 (4 + 2) - (8 - 3)

 add 4 and 2, subtract 8 and 3

 then subtract 6 and 5 thus producing 1

Two additional operators are available in Visual Basic.

They are Integer Division and Mod.

Integer Division: This operator will return only the integer portion of the quotient of two
integers. The symbol for integer division is a backward slash \ . The following are compari-
sons of normal division and integer division:

Example:

20 / 8 = 2.5 while 20 \ 8 = 2

100 / 80 = 1.25 while 100 \ 80 = 1

20 / 4 = 5 while 20 \ 4 = 5

10 / 20 = .5 while 10 \ 20 = 0

Modulus Operator: The Modulus operator (Mod) returns the remainder of the quotient of
two integers.

 1 r 4 this number (4) is the modulus
8 12

Example:

12 Mod 8 = 4

10 Mod 3 = 1

20 Mod 5 = 0

10 Mod 15 = 10

03_Hong-Fischer_065-096.indd 73 5/1/14 11:23 AM

74 n Chapter 3 Data

3.4.1 Operator Precedence
Visual Basic follows the same rules of arithmetic that we have learned. These rules are called the order
of operations. We commonly refer to this order as P E M D A S. Parentheses, Exponents, Multiplication
or Division, Addition or Subtraction. These operations are performed left to right. Now, with Mod and \
included, the following chart shows the levels of priority for all of the above operations.

 Priority Level Operator Operator Name

 1st () parentheses

 2nd ^ exponents

 3rd * , / multiplication or division

 4th \ integer division

 5th Mod modulus (remainder)

 6th + , - addition or subtraction

EXERCISES
Calculate the values for the given expressions.

Expression Value

 1. 24 / 4 * 3

 2. 24 * 4 * 3

 3. 24 - 4 + 3

 4. 5 + 2 * 4

 5. 10 / 2 * 5

 6. 12 / 10

 7. 12 \ 10

 8. 15 \ 20

 9. 15 Mod 2

 10. 18 Mod 7

 11. 15 Mod 20

 12. 3 ^ 2 + 4 * 5

 13. (5 + 2) * -4

03_Hong-Fischer_065-096.indd 74 5/1/14 11:23 AM

3.5 Assignment Statements n 75

 14. 8 + 12 * 3 - 7

 15. 13 - 4 ^ 2

 16. 10 * (5 / 2)

 17. 45 - (8 \ 3) ^ 3 * 5

 18. 8 + 13 Mod 5

 19. 16 Mod 9 \ 2

3.5 ASSIGNMENT STATEMENTS
Assignments are statements that tell the computer to store a value into a variable. Assignment statements
always have an equal (=) sign and one variable name immediately to the left of the equal sign. The right
side of the equal sign can be a value or an expression. The value or expression on the right of the equal
sign is assigned to the variable on the left of the equal sign. In other words, the value of the variable on
the left side of the equal sign changes to become equal to the value on the right side.

In algebra we could see either

x = 3

 or

3 = x

In Visual Basic, 3 = x is not a valid expression. An assignment statement is used to assign a value or
resulting value of a calculation to a variable. The assignment statement has the following syntax:

variable = expression

Examples

x = 5 ‘assigns the value of 5 to variable x

tax = .0675 ‘assigns the value of .0675 to the variable tax

x = y ‘assigns the value in y to variable x

y = x ‘assigns the value in x to the variable y

a = b + c ‘assigns the value of the sum of b and c to a

x = “HELLO” ‘assigns the string HELLO to variable x

a = “Visual Basic” ‘assigns the string Visual Basic to the variable a

03_Hong-Fischer_065-096.indd 75 5/1/14 11:23 AM

76 n Chapter 3 Data

EXERCISES
Write the following as Visual Basic Statements.

 1. a = 2xy

 2. c = 3(a + b)

 3. d = 5y2

 4. e = (6)(8)

 5. f =
+81 82
2

 6. y = 3x - 7

 7. A = lw

 8. A = s2

 9. A = ½bh

 10. A = ½ h (b1 + b2)

 11. A = pr2

 12. d = rt

 13. P = 2l + 2w

 14. P = a + b + c

 15. Q
D

= +
4
5 2

 16. d at=
1
2

2

03_Hong-Fischer_065-096.indd 76 5/1/14 11:23 AM

3.5 Assignment Statements n 77

3.5.1 Type Conversions (Casting)
When an assignment statement is used, the expression on the right side of the = sign may need to be
converted to the data type of the variable to the left of the = sign.

Function Description

CBool() Converts the expression to a Boolean (True or False) value. The expression must be a number. 0
represents False, any other value returns True, a string that represents a number or the strings
“True” or “False”.

CByte() Converts a numeric or string expression to a Byte value. The value must be between 0-255.
All fractional values are rounded.

CChar() Converts a string expression into a char using the first character in the string.

CDate() Converts a valid string expression to a Date.

CDbl() Converts a numeric or string expression to a Double value. The expression must be numeric
(contain only numbers and a decimal point).

CDec() Converts a numeric or string expression to a Decimal value.

CInt() Converts a numeric or string expression to an Integer value.

CLng() Converts a numeric or string expression to a Long value. The expression must be numeric
(contain only numbers and a decimal point).

CObj() Converts an expression to an object.

CShort() Converts a numeric or string expression to a Short value. The expression must be numeric.

CSng() Converts a numeric or string expression to a Single value. The expression must be numeric
(contain only numbers and a decimal point).

CStr() Converts a numeric, Boolean, or Date expression to a String.

Examples:

CInt(String) casting a String to an Integer

CDbl(String) casting a String to a Double

CStr(Integer or Double) casting a numeric value to a String

note: CInt(“123”) becomes 123 ‘the number one-hundred-twenty-three (integer)

 CStr(123) becomes “123” ‘the string of characters 1 2 3

Although the above may look alike, they are different

**When using casting, as in the following:

CInt(“212 Main Street”)

an error will occur due to the fact that the compiler is unable to convert Main Street to a
numeric value.

03_Hong-Fischer_065-096.indd 77 5/1/14 11:23 AM

78 n Chapter 3 Data

All data that is entered by the user through a TextBox or an InputBox (section 3.6) is a String value
and if it is not to be stored as a String value it must be converted using one of the conversion functions.

Casting to an Integer

Dim age As Integer

age = CInt(txtAge.text)

Casting to a Double

Dim salary As Double

salary = CDbl(txtSalary.text)

Casting to a String

Dim age As Integer
Dim s As String
age = 21
s = CStr(age)

EXERCISES

 1. Write the statement that will assign the String variable name to be the value input in
txtName.

 2. Write the statement that will assign the Integer variable grade to be the value input in
txtGrade.

 3. Write the statement that will assign the Double variable salary to be the value input in
txtSalary.

03_Hong-Fischer_065-096.indd 78 5/1/14 11:23 AM

3.5 Assignment Statements n 79

Some Programming Examples

Example 1: Find the area of a square given the side.
The interface should contain a TextBox named txtIn for the input and a TextBox named txtOut for out-
put. A Label should accompany the TextBox prompting the user. A Button named btnArea is also
needed. You will also note that the Text property of Form1 was changed to Area Of A Square.

The interface:

The code for the above example:

‘area of a square

Public Class Form1

 Private Sub btnArea_Click(...

 Dim side, area As Integer ‘declare side and area as Integers

 side = CInt(txtIn.Text) ‘cast value in TextBox to an Integer

 area = side ^ 2 ‘calculate the area

 ‘display the results in a TextBox

 txtOut.Text = “The area of a square with a length of ” & CStr(side) & “ is ” & CStr(area)

 End Sub

End Class

The result:

03_Hong-Fischer_065-096.indd 79 5/1/14 11:23 AM

80 n Chapter 3 Data

Example 2: Find the area of a triangle given the base and height.
The interface should contain two TextBoxes named txtBase and txtHeight for the input and a TextBox
named txtOut for output. Two Labels should accompany each TextBox prompting the user. A Button
named btnArea is also needed. You will also note that the Text property of Form1 was changed to Area
Of A Triangle.

The interface:

The code:

‘area of a triangle

Public Class Form1

 Private Sub btnArea_Click(...

 Dim base, height As Integer ‘declare base and height as Integers

 Dim area As Double ‘since division by 2 could produce a decimal

 base = CInt(txtBase.Text) ‘cast value in both TextBoxes to Integers

 height = CInt(txtHeight.Text)

 area = (base * height) / 2 ‘calculate the area

 ‘display the results in a TextBox

 txtOut.Text = “The area of a triangle with a base ” & CStr(base) & “ and height ” &
 CStr(height) & “ is ” & CStr(area)

 End Sub

End Class

The results:

03_Hong-Fischer_065-096.indd 80 5/1/14 11:23 AM

3.5 Assignment Statements n 81

Example 3: Find the area of a circle given the radius.
The interface should contain a TextBox named txtRadius for the input and a TextBox named txtOut for
output. A Label should accompany the TextBox prompting the user. A Button named btnArea is also
needed. You will also note that the Text property of Form1 was changed to Area Of A Circle.

The interface:

The code:

‘area of a circle

Public Class Form1

 Private Sub btnArea_Click(...

 Dim radius As Integer ‘declare radius as Integer

 Const PI As Double = 3.14159 ‘declare PI a constant

 Dim area As Double ‘since multiplying by a decimal produces a decimal

 radius = CInt(txtRadius.Text) ‘cast value in TextBox to Integer

 area = PI * radius ^ 2 ‘calculate the area

 ‘display the results in a TextBox

 txtOut.Text = “The area of a circle with radius ” & CStr(radius) & “ is ” & CStr(area)

 End Sub

End Class

The result:

03_Hong-Fischer_065-096.indd 81 5/1/14 11:23 AM

82 n Chapter 3 Data

3.6 INPUT BOXES
As mentioned in section 2.3.7, input boxes are an alternative to text boxes for inputting values into your
program. Like text boxes, all values input are String data types so if the input value is to be used as a
number, character, or Boolean value it is necessary to convert the data in the InputBox using the Con-
version Functions in section 3.5.1.

Here are samples of

The syntax for an InputBox is:

variable = InputBox(prompt, title, default value)

 or

variable = Microsoft.VisualBasic.InputBox(prompt, title, default value)

prompt—is the instructions to the user

title—the header at the top of the window

default value—a value that will be input if none other is entered by the user

To create an InputBox to enter a value that is to be stored as an Integer:

Dim num As Integer

num = CInt(Microsoft.VisualBasic.InputBox(“Enter a whole number”, “Input number”, 0))

or the shorter format

Dim age As Integer

age = CInt(InputBox(“Enter your age”))

Note that the conversion function CInt() must be used to convert the String value that is being input
into an Integer value.

To input a Double value:

Dim num As Double

num = CDbl(Microsoft.VisualBasic.InputBox(“Enter a real number”, “Input number”, 0))

or the shorter format

Dim salary As Double

salary = CDbl(InputBox(“Enter the salary”))

03_Hong-Fischer_065-096.indd 82 5/1/14 11:23 AM

3.7 Formatting Output n 83

3.7 FORMATTING OUTPUT
Numeric and date values can be formatted in output statements so that they appear as a specific type of
value. Although these values can be formatted by using a ToString() (see Chapter 7) method along with
a special format description, we will show a simple way to format numbers, currency, dates, times, and
percents.

The function name precedes the formatted variable name enclosed in parenthesis.

Function Description

FormatCurrency Returns an expression formatted as a currency value

FormatPercent Returns an expression formatted as a percentage

FormatNumber Returns an expression formatted as a number

FormatDateTime Returns an expression formatted as a date or time

Assuming we declare a variable

Dim num As Double

and assign a value to variable num

num = 123.45678

Formatting the Number To A Specified Number of Decimals

FormatNumber(variable, number of decimal places)

FormatNumber(num, 2) 123.46

FormatNumber(num, 3) 123.457

FormatNumber(num, 1) 123.5

Formatting Using Currency
Works similar to FormatNumber, but it displays the $ sign before the number

FormatCurrency(variable, number of decimal places)—if number of decimal places is
omitted it defaults to 2 decimal places

FormatCurrency(num, 2) $123.46

FormatCurrency(num) $123.46

FormatCurrency(num,0) $123

03_Hong-Fischer_065-096.indd 83 5/1/14 11:23 AM

84 n Chapter 3 Data

Example:

‘tax on a purchase

Private Sub btnTax_Click(...

 Dim amount, tax, total As Double `declare amount and tax as Integers

 amount = CDbl(txtPurchase.Text) ‘cast value in TextBox to a Double

 tax = amount * 0.08645 ‘calculate the tax

 total = amount + tax ‘calculate total

 ‘display the results formatted as dollars and cents in a TextBox

 lstOut.Items.Add(“The tax on ” & FormatCurrency(amount, 2) & “ is ” &
 FormatCurrency(tax, 2))

 lstOut.Items.Add(“The original amount is ” & FormatCurrency(amount, 2))

 lstOut.Items.Add(“The total cost is ” & FormatCurrency(total, 2))

End Sub

Format as a Percent
Works similar to FormatNumber, but: multiplies num by 100 first, then puts “%” at the end of the number.

FormatPercent(variable, number of decimal places) remember num = 123.45678

FormatPercent(num, 2) 12345.68%

FormatPercent(num, 1) 12345.7%

03_Hong-Fischer_065-096.indd 84 5/1/14 11:23 AM

3.7 Formatting Output n 85

Formatting Using Date or Time

Date/Time Formats

Format Value Description and Examples

DateFormat.GeneralDate If the expression contains a date, it formats it the same as ShortDate (3/21/95). If
contains a time, it formats it the same as LongTime (“02:07:18 PM”).

DateFormat.LongDate Displays the day of the week, the month, the day, and the year. The time is not
reported. (Sunday April 12, 1998)

DateFormat.ShortDate Displays the month, day, and year in MM/DD/YYYY format. (“12/25/2013”)

DateFormat.LongTime Displays the hours, minutes, seconds, and AM or PM. The date is not reported.
(“02:07:18 PM”)

DateFormat.ShortTime Displays just the hours and minutes in military time (24 hour format). The date is
not reported. (“13:54”)

Date/Time Functions (These may be used as the first argument to a FormatDateTime function.)

Function Name Description

Now Returns the current day and time from the system clock.

Today Returns the current date from the system clock (without the time).

TimeOfDay Returns the current time from the system clock (without the date).

Private Sub btnPress_Click(...

 Dim day, hour As DateTime

 day = “6/7/51”

 hour = “4:27”

 lstOut.Items.Add(“GeneralDate ” & FormatDateTime(day, DateFormat.GeneralDate))

 lstOut.Items.Add(“LongDate ” & FormatDateTime(day, DateFormat.LongDate))

 lstOut.Items.Add(“ShortDate ” & FormatDateTime(day, DateFormat.ShortDate))

 lstOut.Items.Add(“ ”)

 lstOut.Items.Add(“GeneralDate ” & FormatDateTime(hour, DateFormat.GeneralDate))

 lstOut.Items.Add(“LongTime ” & FormatDateTime(hour, DateFormat.LongTime))

 lstOut.Items.Add(“ShortTime ” & FormatDateTime(hour, DateFormat.ShortTime))

 lstOut.Items.Add(“ ”)

 lstOut.Items.Add(“Now-GeneralDate ” & FormatDateTime(Now, DateFormat.GeneralDate))

 lstOut.Items.Add(“Today-LongDate ” & FormatDateTime(Today, DateFormat.LongDate))

 lstOut.Items.Add(“Today-ShortDate ” & FormatDateTime(Today, DateFormat.ShortDate))

 lstOut.Items.Add(“TimeOfDay-LongTime ” & FormatDateTime(TimeOfDay, DateFormat.
 LongTime))

 lstOut.Items.Add(“TimeOfDay-ShortTime ” & FormatDateTime(TimeOfDay, DateFormat.
 ShortTime))

End Sub

03_Hong-Fischer_065-096.indd 85 5/1/14 11:23 AM

86 n Chapter 3 Data

The output of the above:

3.8 MATH FUNCTIONS
There are functions pertaining to mathematical concepts that can be used in a variety of ways. Many of
these are beyond the scope of an introductory class, but it is beneficial for the person who might choose
to continue their programming education to examine the following functions.

Function Description Syntax

Math.Abs Returns the absolute value of a number. Math.Abs(number)

Math.Ceiling Returns an integer greater than or equal to a number. Math.Ceiling(number)

Fix Returns the integer part of a number. If the number is
negative, a negative number greater than or equal to the
number is returned.

Fix(number)

Math.Floor Returns largest integer less than or equal to a number. Math.Floor(number)

03_Hong-Fischer_065-096.indd 86 5/1/14 11:23 AM

3.8 Math Functions n 87

Function Description Syntax

Int Return the integer part of a number. But if the number is
negative, it returns the negative number less than or equal to
the number.

Int(number)

Math.Max Returns the largest of two decimal numbers. Math.Max(num1,num2)

Math.Min Returns the smallest of two decimal numbers. Math.Min(num1,num2)

Math.Pow Returns a number raised to the power value. Math.Pow(number,power)

Rnd Returns a random number of single datatype. Rnd(number)

Math.Sign Returns the sign of a number. Math.Sign(number)

Math.Sqrt Return the square root of a number. Math.sqrt(number)

Math.Log Returns the logarithm for a number. Math.Log(number)

Math.Log10 Return the base 10 logarithmic value for a number. Math.Log10(number)

Math.Sin Returns the Sine value for a angle. This function returns NaN
if the angle is positive or negative infinity value or it is not a
number.

Math.Sin(value)

Math.Asin Returns the Arc Sine angle for a sine value. The value should
be in the range of ‘-1’ and ‘1’.

Math.Asin(value)

Math.Sinh Returns the Hyperbolic Sine value for an angle. If the value is
negative or positive infinity or NaN, it returns an equivalent
value in Double datatype.

Math.Sinh(value)

Math.Cos Returns the Cosine value for an angle. If the specified angle is
positive or negative infinity or Not a Number, the value
returned is ‘NaN’.

Math.Cos(value)

Math.Acos Returns the Arc Cosine value for a Cosine value. Math.Acos(value)

Math.Cosh Returns the hyperbolic Cosine value for an angle. If the angle
is positive or negative infinity returns a positive infinity value.
If the angle is ‘NaN’ returns the same.

Math.Cosh(value)

Math.Tan Returns the tangent value for an angle. If an angle is positive,
negative infinity or Nan, the function returns ‘NaN’.

Math.Tan(value)

Math.Atan Returns the arc tangent value for a tangent value. Math.Atan(value)

Math.Tanh Returns the hyperbolic tangent value for a angle. Math.Tanh(value)

03_Hong-Fischer_065-096.indd 87 5/1/14 11:23 AM

88 n Chapter 3 Data

Illustrations of Math Functions (Note: expression in the explanations below refers to a calculation, vari-
able or numeric value)

Math.Abs Function
The Abs is short for the absolute value. It examines an expression and returns the absolute value (non-
negative value) of the expression. The absolute value is defined as the distance from 0, which is a posi-
tive value, whereas the direction can be positive or negative or 0.

Syntax: Math.Abs(number)

Examples: Math.Abs(3) is 3

 Math.Abs(-3) is 3

 Math.Abs(0) is 0

 Math.Abs(4.79) is 4.79

 Math.Abs(-4.79) is 4.79

Math.Ceiling Function
The Ceiling will examine an expression and return an Integer that is the next highest Integer if the
expression is a decimal, or returns the Integer itself if the expression is an integer. Math.Ceiling() returns
an Integer greater than or equal to the specified number.

Syntax: Math.Ceiling(Number)

Examples: Math.Ceiling(2.3) is 3

 Math.Ceiling(-2.4) is -2

 Math.Ceiling(-.9) is 0

 Math.Ceiling(.4) is 1

 Math.Ceiling(5) is 5

 Math.Ceiling(-5) is -5

Math.Floor Function
The Floor function returns just the reverse of what the Ceiling function produces. It examines an expres-
sion and returns the lower Integer value of an expression, or the number itself if it happens to be an
Integer.

Syntax: Math.Floor(Number)

Examples: Math.Floor(2.3) is 2

 Math.Floor(-2.4) is -3

 Math.Floor(-.9) is -1

 Math.Floor(.4) is 0

 Math.Floor(5) is 5

 Math.Floor(-5) is -5

03_Hong-Fischer_065-096.indd 88 5/1/14 11:23 AM

3.8 Math Functions n 89

Fix Function
The Fix function will examine an expression and return only an Integer part of the number if the num-
ber is positive. But when the number is negative, it returns the next higher Integer value of the expres-
sion. The diagram below attempts to show how the Fix works.

Fix value -3-3-3-3-2-2-2-2-1-1-1-1 00000000 1 1 1 1 2 2 2 2 3 3 3 3

given value -3 -2 -1 0 1 2 3

Syntax: Fix(Number)

Examples: Fix(2.4) is 2

 Fix(-2.4) is -2

 Fix(2) is 2

 Fix(-2) is -2

Int Function
The Int function examines an expression and returns the Integer portion of that number. If the number
is negative, a negative number less than or equal to that number is returned.

Syntax: Int(Number)

Examples: Int(2.4) is 2

 Int(-2.4) is -3

Math.Max Function
The Max function is used to compare two values. It will examine two given and returns the larger
of two decimal numbers

Syntax: Math.Max(num1, num2)

Examples: Math.Max(2,6) is 6

 Math.Max(5.6, 2.91) is 5.6

 Math.Max(5, -7) is 5

 Math.Max(-4, -6) is -4

03_Hong-Fischer_065-096.indd 89 5/1/14 11:23 AM

90 n Chapter 3 Data

Math.Min Function
The Min function is used to compare two values. It will examine the two given values and returns the
smallest of two decimal numbers.

Syntax: Math.Min(num1, num2)

Examples: Math.Min(2,6) is 2

 Math.Min(5.6, 2.91) is 2.91

 Math.Min(5,-7) is -7

 Math.Min(-4,-6) is -6

Math.Pow Function
Pow is the power function. It takes two numbers and raises the first number to the power indicated by
the second number. It is the same as using the ^ symbol with a number. We have already taken numbers
to a power by using the exponent symbol.

Syntax: Math.Pow(Number,Power)

Examples: Math.Pow(2,3) is 8

 Math.Pow(3,2) is 9

 Math.Pow(4,2) is 16

 Math.Pow(16,.5) is 4

Math.Sqrt Function
Math.Sqrt() returns the square root of a number.

Syntax: Math.Sqrt(Number)

Examples: Math.Sqrt(16) is 4

 Math.Sqrt(100) is 10

 Math.Sqrt(2) is 1.414213562

Math.Sign Function
Math.Sign() returns the sign of the specified number in the argument. The value returned is either -1,
1, or 0: -1 if the number is negative, 1 if the argument is positive, and 0 if the argument is 0.

Syntax: Math.Sign(Number)

Examples: Math.Sign(5) is 1

 Math.Sign(-5) is -1

 Math.Sign(0) is 0

03_Hong-Fischer_065-096.indd 90 5/1/14 11:23 AM

3.8 Math Functions n 91

Math.Log Function
Math.Log() finds the logarithm for the specified value.

Syntax: Math.Log(Value)

Examples: Math.Log(1) is 0

 Math.Log(0) is -Infinity

Math.Log10 Function
Math.Log10() finds the base 10 Logarithmic value for a number.

Syntax: Math.Log10(Value)

Examples: Math.Log10(100) is 2

 Math.Log10(1000) is 3

Math.Sin Function
Math.Sin() is used to find the Sine value for an angle in Radians. This returns NaN if the given angle is
positive or negative infinity.

Syntax: Math.Sin(Value in radians)

Examples: Math.Sin(1) is 0.841470984807897

 Math.Sin(2) is 0.909297426825682

Math.Asin Function
Math.Asin() is used to find the Arc Sine angle for a sine value. The value should be in the range of -1
and 1 or NaN will be returned.

Syntax: Math.Asin(Value)

Examples: Math.Asin(6) is NaN

 Math.Asin(0) is 0

 Math.Asin(1) is 1.5707963267949

Math.Cos Function
Math.Cos() is used to find the Cosine value for an angle in Radians. If the angle is positive or negative
infinity the return value is NaN.

Syntax: Math.Cos(Value in Radians)

Examples: Math.Cos(0) is 1

 Math.Cos(.5) is 0.87758256189037276

 Math.Cos(1) is 0.54030230586813976

 Math.Cos(2) is -0.41614683654714241

03_Hong-Fischer_065-096.indd 91 5/1/14 11:23 AM

92 n Chapter 3 Data

Math.Acos Function
Math.Acos() is used to find the Arc Cosine value for a Cosine value.

Syntax: Math.Acos(Value)

Examples: Math.Acos(1) is 0

 Math.Acos(0) is 1.5707963267948966

 Math.Acos(.5) is 1.0471875511965979

 Math.Acos(-2) is NaN

Math.Tan Function
Math.Tan() is a mathematical function that is used to find the tangent value for an angle in Radians. If
the given angle is positive, negative infinity or NaN, the function returns NaN.

Syntax: Math.Tan(Value in Radians)

Example: Math.Tan(0) is 0111

 Math.Tan(1) is 1.557077246549023

 Math.Tan(2) is -2.1850398632615189

Math.Atan Function
Math.Atan() is used to find the arc tangent value for the given tangent value.

Syntax: Math.Atan(Value)

Examples: Math.Atan(1) is 0.785398163397448

 Math.Atan(0) is 0

 Math.Atan(1.55707724654903) is 0.99990351015877854

Rnd Function
Rnd() returns a random number of a Double data-type. Many game programs use the concept of random
numbers. Visual Basic has a variety of ways in which to generate the simulations of random numbers.

Syntax: Rnd(Number)

Examples: First, it is necessary to randomize the random number generator by using the
following statement:

 Randomize() ‘initialize the random number generator

03_Hong-Fischer_065-096.indd 92 5/1/14 11:23 AM

3.8 Math Functions n 93

And then to actually generate a number, use Rnd(). This will produce a random number (a
double) as small as 0 and less than 1.

Dim value As Double
Randomize()
value = Rnd()
txtOut.Text = value

The output will produce a value from 0 to .999999999.

These values are not always appropriate to use. It is often necessary to generate the numbers
0 and 1 to simulate the toss of a coin, or the numbers 1 to 6 to simulate the roll of a die. This
is accomplished by multiplying and adding values to the Rnd().

Example: To simulate the roll of a die:

Randomize()
Dim value As Integer
‘Generate random value between 1 and 6
value = Int((6 * Rnd()) + 1)
txtOut.Text = value

Examining this line: value = Int((6 * Rnd()) + 1)

6 * Rnd()

takes a number between 0 - .99999999 and multiplies it by 6 which now becomes a value
from 0 - 5.9999999

adding 1 to the value now makes it: 1 - 6.9999999

Int: the mathematical function which takes only the integer value so new value will be an
integer value from 1 - 6

Random numbers are used in many applications of games and cards. We also see the use of random
numbers in the generation of Lotto, Lottery, the Daily Number, Pick Three, etc.

03_Hong-Fischer_065-096.indd 93 5/1/14 11:23 AM

94 n Chapter 3 Data

The following is a program example:

A simulation of the NYS Daily Number - randomly choosing three numbers from 0 to 9, and
making a three-digit representation of a number from 0 to 999.

‘to simulate the NYS daily number

Private Sub btnNumber_Click(...

 Dim num1, num2, num3 As Integer

 Randomize()

 txtOut.Clear() ‘clears the text box

 num1 = Int(Rnd() * 10)

 num2 = Int(Rnd() * 10) ‘generate each to be digit to be values 0 to 9

 num3 = Int(Rnd() * 10)

 ‘constructing textbox

 txtOut.Text = “ ” & CStr(num1) & “ ” & CStr(num2) & “ ” & CStr(num3)

End Sub

3.9 VISUAL BASIC DESIGN GUIDELINES
Try to put yourself in the place of the user and think about how your program will be used. Some basic
guidelines for developing a good, user-friendly interface, as well as better code writing:

General Form Design
• Place information toward the top left or top center of the screen, because we usually read from

right to left.

• Try to provide some blank space on the screen.

• Make sure controls are surrounded by blank space and not next to each other.

03_Hong-Fischer_065-096.indd 94 5/1/14 11:23 AM

3.10 Summary n 95

• Keep Buttons within the same size if in a column or a row.

• Don’t make the Form larger than the screen size.

Labels and Text Boxes
• Provide every TextBox used for input with a Label.

• The proximity of a Label should be either above or to the left of the TextBox they are describing.

• Use only one or two fonts that are easy to read.

• Use a font size of usually 10 or 12 to make it more easily readable.

• Be consistent with upper and lowercase letters.

• Do not use wild or special fonts that may be hard to read or that may not be available on the
user’s computer.

• Don’t use a lot of underlining or italics.

Buttons
• The text in a Button should be clearly labeled.

Colors
• Generally use colors to create a soothing effect.

• Use a contrasting color to emphasize headings or titles.

And for the programming code portion of your project:

Code
• Name your controls to indicate their purpose using the three-letter prefixes txt(TextBox),

lbl(Label), btn(Button), lst(ListBox).

• Use variable names that are similar to their representations like avg to store an average value.

• Place comments throughout your program code.

3.10 SUMMARY
All values that are stored in a Visual Basic program are considered to be a specific data type. The most
common data types used in programs are String (a collection of characters), Char (a single character),
Integer (whole numbers), and Double (real numbers).

When using a variable to store a value the variable must be declared using a Dimension statement.

Dim variablename As data-type

Variables that are declared as constants contain values that cannot change throughout the pro-
gram execution.

Variables can be used in arithmetic assignment statements. All resulting variables are stated on the
left side of the = sign while all calculations are on the right side of the = sign.

result = a + b

Visual Basic calculations follow the same order of mathematical operator precedence as commonly
accepted in mathematics. This order is known by the acronym PEMDAS.

03_Hong-Fischer_065-096.indd 95 5/1/14 11:23 AM

96 n Chapter 3 Data

All data that is input to a Visual Basic program is String data. In order to change these values to
another data type (Integer, Double…) conversion or casting functions must be used.

Output can be formatted using a variety of formatting functions. One of the most common output for-
mat function used is when displaying money values using FormatCurrency.

For more complex mathematic operations (square root, exponents, ...) Visual Basic provides a set of
Math functions that can be used in assignment statements and calculations.

PROGRAMMING PROBLEMS

PROBLEM 1
Your Uncle Thaddeus has gone into the perfume business and has decided to sell his perfume in pyramid
shaped bottles. He has asked you to write a program that given the dimensions of the pyramid bottle you
can calculate and output the volume in cubic inches for his pyramid shaped perfume bottles. Also
include a picture of your bottle on your interface.

PROBLEM 2
Your Uncle Thaddeus has decided to cash in his piggy bank. His bank contains only pennies, nickels,
dimes, and quarters. Write a program to figure out how much money your Uncle Thaddeus has in
his piggy bank. You can use textboxes or input boxes for input (your choice). Display the amount in a
ListBox remembering to use FormatCurrency because the output is a money value.

PROBLEM 3
Uncle Thaddeus Pizzeria needs a program to calculate the number of slices that can be cut from any size
pizza.

The input for the program will be the diameter of the pizza in inches. The program will calculate the
number of slices based on the “rule” that each slice should have an area of 21.5 inches squared.

You can test your program with the following:

Diameter of Pie Number of Slices (number is rounded)

18 inches 12

14 inches 7

8 inches 2

PROBLEM 4
You have decided to open a store based on one of your favorite themes. Your store will offer only a lim-
ited number of items—four.

Create a VB project that displays your merchandise and corresponding prices. Allow your customers
to enter the quantities of each item and then calculate and display the total amount for their purchase
including a 5% sales tax. Remember to use FormatCurrency in your output!

03_Hong-Fischer_065-096.indd 96 5/1/14 11:23 AM

