Chapter 1 Introduction
Data of Week 1
1.1 Central Statistical Values
1.2 Variation Statistical Values
1.3 Other Statistical Values
1.4 Machine Learning
1.5 Python Tutorial 1
Practice 1
Chapter 2 Data Exploration
Data of Week 2
2.1 Data Exploration
2.2 Data Characteristics
2.3 Data Preprocessing
2.4 Visualization
2.5 Python Tutorial 2
Practice 2
Chapter 3 Feature Engineering
Data of Week 3
3.1 Feature Engineering
3.2 Feature Selection
3.3 Model Evaluation Factors
3.4 Python Tutorial 3
Practice 3
Chapter 4 Regression
Data of Week 4
4.1 Linear Regression
4.2 Logistic Regression
4.3 Python Tutorial 4
Practice 4
Chapter 5 Classification
Data of Week 5
5.1 Building Models
5.2 Classification
5.3 Python Tutorial 5
Practice 5
Chapter 6 Decision Tree
Data of Week 6
6.1 Introduction
6.2 Model Evaluation
6.3 Python Tutorial 6
Practice 6
Chapter 7 K-Nearest Neighbor
Data of Week 7
Depression and Anxiety Data
7.1 Introduction
7.2 Elbow Graph
7.3 Python Tutorial 7
Practice 7
Chapter 8 Support Vector Machine
Data of Week 8
Flight Price Prediction
8.1 Kernels
8.2 Support Vector Machine
8.3 Python Tutorial 8
Practice 8
Chapter 9 K-means
Data of Week 9
9.1 Clustering
9.2 K-means
9.3 Python Tutorial 9
Practice 9
Chapter 10 Hierarchical Clustering
Data of Week 10
10.1 Introduction
10.2 Clustering Method Evaluation
10.3 Python Tutorial 10
Practice 10
Chapter 11 Ensemble Methods
Data of Week 11
11.1 Learning Methods
11.2 AdaBoost Algorithm
11.3 Random Forest
11.4 Python Tutorial 11
Practice 11